Десять великих идей науки. Как устроен наш мир. - [5]
Предвкушая механизм наследственности, речь о котором пойдет в следующей главе, мы могли бы сказать, что каждый вид представляет собой отдельный генный бассейн, с генами, циркулирующими внутри бассейна при спаривании представителей вида — процесс, называемый генным потоком, — но не мигрирующими в генные бассейны, представляющие другие виды. Генный поток внутри вида гарантирует, что все его представители выглядят более или менее похожими, так что концепция биологических видов согласуется с критериями, принятыми у типологических таксономистов.
Тогда почему же определение видов столь противоречиво? Одна из проблем в определении, основанном на понятии спаривания, состоит в том, что некоторые организмы вообще не спариваются. Например, далеко не все спаривающиеся бактерии классифицированы как виды, и существует множество примеров многоклеточных организмов, которые размножаются неполовым путем (таких, как обычные одуванчики, Taraxacum officinale), однако считаются истинными видами. Эта проблема обнаруживает, что слово «вид» имеет два, иногда несхожих, значения. Одно значение, отсылающее к сказанному выше, связано с репродуктивной изоляцией организмов. Второе значение состоит в том, что термин «вид» является просто одной из конечных точек в основании таксономической пирамиды, предельной единицей классификации групп организмов, безотносительно к их способности или неспособности спариваться с другими организмами. То есть вид это в точности таксон, единица классификации. Использование термина «вид» просто для обозначения таксона является обычным в палеонтологии, где одной линии наследования могут приписываться различные имена на разных стадиях ее развития, хотя ее последовательные члены никогда не могли бы даже рассмотреть возможность спаривания. Так, Homo erectus превратился в H. sapiens, но они никогда не прогуливались вместе: оба являются примерами того, что иногда называют хронотипами.
Осознание этих трудностей создает мотив для поиска альтернативных определений вида, которые то перекрываются, то вступают в конфликт с биологической концепцией видов. Например, один из способов классификации организмов является фенетическим, в нем организмы зачисляются в одну группу на основании чисто объективных измерений, включая дискретные измерения, такие как использование числа 1 для факта «имеет крылья» и 0 для «не имеет крыльев». Игры «узнай своего партнера» в газетах, журналах и агентствах по сбору данных являются по сути фенетическими. Преимущество фенетического подхода в том, что он строго объективен и не полагается на субъективные суждения о происхождении организмов и на догадки о том, могли, при случае, один организм — возможно уже исчезнувший — спариться с другим. Одна из проблем этой схемы состоит в том, что хотя фенетически отождествляемые группы организмов выглядят почти идентичными, они тем не менее могут быть неспособны иметь потомство друг с другом. Таким образом, являясь одним фенетическим видом, они принадлежат разным биологическим видам. Примером является фруктовая мушка Drosophila с ее двумя (неспособными к скрещиванию) категориями, D. pseudoobscura и D. persimilis. Эти два организма являются практически неразличимыми фенетически, поэтому они образуют один фенетический вид, но, будучи нескрещивающимися, составляют два биологических вида.
Существуют и другие определения того, что значит быть видом, и применение критериев, которые в них предлагаются, мутит воду еще больше. Экологическая концепция видов принимает во внимание важность роли окружающей среды, ресурсов и опасностей, из нее исходящих. Она определяет вид как группу организмов, использующую одиночную экологическую нишу. Опознавательная концепция видов принимает во внимание способность организма опознавать потенциального партнера для спаривания. Преимущество этого определения, тесно связанного с биологической концепцией видов, состоит в том, что если возможность спаривания зачастую приходится лишь предполагать, то опознавание часто можно наблюдать непосредственно. Возможны случаи появления нового вида, когда одна группа организмов не может более опознавать своих недавних супругов в качестве потенциальных партнеров. Опознавание не обязательно происходит по внешнему виду: растения и животные сообщаются между собой различными путями, включая звук, а также более сдержанный или даже, по нашим понятиям, бессознательный путь испускания и детекции химических веществ, которые мы называем феромонами и которые человеческие существа иногда включают, по абсолютно тем же мотивам, в свои духи и лосьоны. И наконец (наконец — лишь в этом кратком обзоре, поскольку имеются и другие определения), существует филогенетическая концепция видов, в которой вид определяется как группа организмов, имеющая общего предка, и отличающаяся от других групп по крайней мере одним признаком. В соответствии с этим определением, члены двух разных филогенетических видов могут различаться всего одним признаком и быть способными иметь общее потомство.
Нет сомнения, что виды эволюционировали и продолжают эволюционировать. Свидетельством эволюции в прошлом являются ископаемые останки, которые разворачивают во времени замечательную последовательность образов населявшей Землю жизни. Эта картина неполна, ведь сегодня ни один музей — а музеи обычно гораздо больше пекутся о своей собственности, чем сыра земля — не имеет образцов каждого исчезнувшего вида. Но она достаточно полна для того, чтобы мы могли проследить сквозь время происхождение живых существ, включая наше собственное возникновение в — сюда не подходит клише «далекое и туманное» — недавнем и ярком прошлом.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.