Десять великих идей науки. Как устроен наш мир. - [45]
Хотя тепло и работа являются двумя ликами энергии, между ними, как и предполагает здравый смысл, имеется разница. Полное понимание тепла и работы, и того, каким образом они выражают энергию, придется отложить до развития молекулярного понимания этого определения. И, как это часто бывает в науке, вместе с пониманием приходит осознание того, что таких вещей не существует: нет такой вещи, как тепло и нет такой вещи, как работа! Поскольку очевидно, что мы в нашей повседневной жизни просто окружены обоими, это замечание заключает в себе больше, чем кажется с первого взгляда. Давайте вникнем в это.
Во-первых, что я имею в виду, когда утверждаю вещь, очевидно парадоксальную и противоречащую всему, что было сказано прежде: ни тепло, ни работа не есть формы энергии? Ключевым пунктом здесь является то, что оба явления являются путями переноса энергии из одного места в другое. Работа есть один путь переноса, тепло — другой. Нет такой вещи, как «работа», запасенная в двигателе и высвобождаемая, когда мы едем по дороге или поднимаем груз. В точности так же (хотя это и противоречит тому, что мы используем этот термин в легкомысленных разговорах) не существует такой вещи, как «тепло», запасенное в объекте, несмотря даже на то, что мы можем думать об объекте, как о горячем. Тепло — это способ переноса энергии: это энергия в переходе, а не энергия, которой что-то обладает. Возможно, вы уже можете уловить, что, коль скоро я разъясняю, как именно вам следует понимать термин «тепло», вам следует отринуть все прежние понятия, основанные на неточных терминах повседневной речи. Чтобы создать новый термин, ученые часто выбирают знакомое слово, срезают с него мясо и жир и используют лежащую под ними кость. И так же часто ученые совершенствуют язык, чтобы он не был замкнутым в себе и холодным, и даже отбивают хлеб у поэтов, но они ведь действительно знают о чем идет речь.
Работа является энергией, переносимой таким способом, что, по крайней мере в принципе, эту энергию можно использовать для поднятия груза (или, в более общем случае, для движения объекта против противодействующей силы). Не было никакой работы, запасенной в двигателе до события, она также не появилась в сдвинутом объекте после события. В двигателе перед событием была запасена абстрактная сущность, энергия; сдвинутый объект имел после события более высокую энергию, могла стать выше его кинетическая энергия или, в случае поднимания груза, могла увеличиться потенциальная энергия. Энергия была перенесена от двигателя к объекту посредством работы: работа является посредником переноса, а не переносимой сущностью. Ни к чему не обязывающие слова «в принципе» не должны пройти незамеченными. Они в этом примере означают, что энергия, покинувшая двигатель (или какой-нибудь другой рассматриваемый нами прибор), могла бы быть использована для поднятия груза, даже если этого факта не было. Например, работа могла бы быть использована для приведения в движение генератора, который пропускает электрический ток через электронагреватель. Конечным продуктом была бы скорее горячая вода, чем поднятый вес. Однако мы могли использовать эту энергию для поднятия груза, поэтому она была высвобождена как работа.
Тепло — это энергия, которая переносится в результате разницы температур, причем энергия течет от горячего (имеющего высокую температуру) тела к холодному (имеющему низкую температуру). Не было никакого тепла, запасенного в источнике до события; оно не оказалось запасенным в принимающем объекте после события. Это энергия была запасена в источнике до события; нагретый объект получил более высокую энергию после события — могло, например, испариться немного воды или растаять немного льда. Энергия была перенесена от источника к объекту посредством тепла: тепло является посредником переноса, а не переносимой сущностью.
Все становится ясным, когда мы рассматриваем события на молекулярном уровне. Предположим, что мы можем снаружи наблюдать движение атомов в двигателе. Для определенности, давайте посмотрим с близкого, действительно близкого расстояния на поршень, толкаемый расширяющимся газом (в двигателе автомобиля) или поступающим паром (в паровом двигателе). Если бы мы могли рассмотреть атомы поршня, мы увидели бы, что они движутся в том же направлении, что и сам поршень (рис. 3.9). В конце концов, наблюдаемое макроскопическое движение является однородным движением бесчисленных атомов. В паровой турбине нет поршня: вместо этого сила пара вращает лопасти турбины, и мы можем использовать это движение для совершения работы. Если бы мы могли рассмотреть атомы лопастей, мы увидели бы, что они так же движутся по кругу, как и сами лопасти. Когда провод подключен к полюсам электрической батареи, через него движутся электроны, создавая поток электронов — электрический ток. Если бы мы могли рассмотреть электроны в проводе, мы бы увидели, что они движутся в направлении течения тока. Электрический ток можно использовать для совершения работы, например, включив электрический мотор в сеть. В каждом случае работа связана с однородным движением атомов (или электронов). Это и есть то, чем является работа, это перенос энергии, который создает в области своего действия
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.