Десять великих идей науки. Как устроен наш мир. - [27]

Шрифт
Интервал

Уилкинс работал над ДНК в Королевском колледже, когда глава лаборатории, намереваясь построить рентгеновский аппарат, пригласил Франклин поработать в колледже и вложить в дело свои специальные познания в рентгеновской кристаллографии. Она приобрела эти познания, изучая микроструктуру угля в парижской лаборатории и была живо заинтересована в том, чтобы переключить свое внимание на живую жизнь в большей степени, чем на ископаемую. Было не вполне ясно, удастся ли ей совершить эту перемену места работы, поскольку Королевский колледж в то время запрещал женщинам находиться в его общей комнате.[9] Уилкинс отсутствовал в момент ее появления и, возвратясь, был приведен в замешательство ролью новой сотрудницы. Немедленно произошло столкновение темпераментов, и каждый из соперников создал свою лабораторию для работы над ДНК. Обе группы вскоре получили весьма неплохие рентгеновские фотографии нитей, образующих эту молекулу. На конференции в Неаполе Уилкинс встретил молодого американского биолога Джеймса Уотсона и показал ему свои изображения. Это побудило Уотсона начать работу над структурой ДНК, и в сентябре 1951 г. он отправился в Кембридж, чтобы изучить дифракцию рентгеновских лучей в лаборатории, которой заведовал сэр Лоуренс Брэгг, один из основателей рентгеновской кристаллографии. Здесь Уотсон встретил Френсиса Крика, как раз заканчивавшего докторскую диссертацию.

В ноябре 1951 г. эти два потока усилий столкнулись, один, имевший тщательно проделанные измерения, но лишенный отваги (или способности) предложить собственную их интерпретацию, другой со смелыми умозаключениями, но без ресурсов (или терпения) для проведения измерений. Уотсон приехал в Лондон и выслушал сообщение Франклин о ее работе. Он поторопился назад в Кембридж, где вместе с Криком они построили модель, которую считали соответствующей тому, что Уотсон смог запомнить из данных Франклин, и пригласили Лондонскую команду приехать и посмотреть на нее. Построение моделей — реальных физических моделей, собранных из проволоки и кусков металла — демонстрировало могущество техники в деле прояснения структуры белков, и Крик и Уотсон просто следовали моде своего времени. Лондонская команда приехала и немедленно отвергла модель как несогласующуюся с их данными. Они также отвергли и сам метод сооружения моделей, метод потенциально (а как оказалось, и реально) продуктивный. Более того, Брэгг приказал Крику и Уотсону прекратить работу над ДНК, оставив ее Лондонской команде, которой и принадлежал весь проект. Отношение к собственности в науке, так же как отношение к женщине, изменилось с тех пор: возможно, следующий шаг и отмечает поворотный пункт к будущему.

В 1952 г. Крик и Уотсон узнали, что Линус Полинг, весьма успешно исследовавший структуру белков, в которой Брэгг не разбирался, работает над той же проблемой. Если работает Полинг, решили они, значит, собственность на проблему уже ускользнула из рук лондонцев, и они имеют право работать над ней, как и любой другой. Далее случилось нечто немного странное. В этот момент Уилкинс без ведома Франклин показал Уотсону одну из ее рентгеновских фотографий (рис. 2.6), а Макс Перуц предоставил ему и Крику неопубликованный доклад в Совете медицинских исследований, в котором Франклин сводила вместе свои последние данные. Наконец-то они получили некоторые определенные числа, характеризующие размеры спиральной молекулы, и смогли подогнать к ней свою модель. Через несколько недель они уже имели возможность с триумфом отослать Уилкинсу свою знаменитую модель, и он ее получил. Трио публикаций, одна Крика и Уотсона, одна группы Уилкинса и одна группы Франклин (Франклин так никогда и не узнала, что Уилкинс воспользовался ее данными), появилось в Nature 25 апреля 1953 г. Две последних предоставили данные эксперимента, подтверждающие умозрения первой. Эта дата, 25 апреля 1953 г., является днем рождения современной биологии.

Рис. 2.6. Этот снимок дифракции рентгеновских лучей, полученный Розалиндой Франклин, был решающей для понимания детальной структуры ДНК частью экспериментальных данных. Он подтверждает, что эта молекула имеет форму двойной спирали, а детали фотографии могут быть использованы для определения размеров этой спирали.


Структура ДНК теперь повсеместно известна как знаменитая символическая правосторонняя двойная спираль, в которой одна длинная нить нуклеиновой кислоты обернута вокруг другой, образуя сплетенную пару (рис. 2.7), которая весьма похожа на сплетенные лестницы входа для публики в музее Ватикана[10], что выглядит немного иронично. Ключевым моментом, однако, оказывается то, что нуклеотидные основания одной нити являются парными к нуклеотидам другой (рис. 2.8), так что аденин всегда в паре с тимином (что мы обозначаем как A…T), а гуанин всегда вместе с цитозином (что обозначаем как G…C). Эта парность соответствует наблюдению Чарграффа, показавшему, что количество аденина в его образцах таково же, как количество тимина, а количество гуанина равно количеству цитозина: комплементарность гарантирует равенство их количеств. Можно также отметить, что относительно маленький пурин (аденин и гуанин) всегда спарен с более крупным пиримидином (тимин и цитозин), поскольку таким способом поддерживается форма двойной спирали: два больших пурина попадают в выпуклость, а два маленьких пиримидина в снижающуюся часть витка спирали. Парность соответствует и другому наблюдению Чарграффа: количество пуринов (A+G) в образце равно количеству пиримидинов (T+C).


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.