Давайте создадим компилятор! - [3]

Шрифт
Интервал

end;

{–}

{ Recognize an Alpha Character }

function IsAlpha(c: char): boolean;

begin

IsAlpha := upcase(c) in ['A'..'Z'];

end;

{–}

{ Recognize a Decimal Digit }

function IsDigit(c: char): boolean;

begin

IsDigit := c in ['0'..'9'];

end;

{–}

{ Get an Identifier }

function GetName: char;

begin

if not IsAlpha(Look) then Expected('Name');

GetName := UpCase(Look);

GetChar;

end;

{–}

{ Get a Number }

function GetNum: char;

begin

if not IsDigit(Look) then Expected('Integer');

GetNum := Look;

GetChar;

end;

{–}

{ Output a String with Tab }

procedure Emit(s: string);

begin

Write(TAB, s);

end;

{–}

{ Output a String with Tab and CRLF }

procedure EmitLn(s: string);

begin

Emit(s);

WriteLn;

end;

{–}

{ Initialize }

procedure Init;

begin

GetChar;

end;

{–}

{ Main Program }

begin

Init;

end.

{–}

Скопируйте код, представленный выше, в TP и откомпилируйте. Удостоверьтесь, что программа откомпилировалась и запустилась корректно. Затем переходим к первому уроку, синтаксическому анализу выражений.

Синтаксический анализ выражений 

Начало

Если вы прочитали введение, то вы уже в курсе дела. Вы также скопировали программу Cradle в Turbo Pascal и откомпилировали ее. Итак, вы готовы.

Целью этой главы является обучение синтаксическому анализу и трансляции математических выражений. В результате мы хотели бы видеть серию команд на ассемблере, выполняющую необходимые действия. Выражение – правая сторона уравнения, например:

x = 2*y + 3/(4*z)

В самом начале я буду двигаться очень маленькими шагами для того, чтобы начинающие из вас совсем не заблудились. Вы также получите несколько хороших уроков, которые хорошо послужат нам позднее. Для более опытных читателей: потерпите. Скоро мы двинемся вперед.

Одиночные цифры

В соответствии с общей темой этой серии (KISS-принцип, помнишь?), начнем с самого простого случая, который можно себе представить. Это выражение, состоящее из одной цифры.

Перед тем как начать, удостоверьтесь, что у вас есть базовая копия Cradle. Мы будем использовать ее для других экспериментов. Затем добавьте следующие строки:

{–}

{ Parse and Translate a Math Expression }

procedure Expression;

begin

EmitLn('MOVE #' + GetNum + ',D0')

end;

{–}

И добавьте строку “Expression;” в основную программу, которая должна выглядеть так:

{–}

begin

Init;

Expression;

end.

{–}

Теперь запустите программу. Попробуйте ввести любую одиночную цифру. Вы получите результат в виде одной строчки на ассемблере. Затем попробуйте ввести любой другой символ и вы увидите, что синтаксический анализатор правильно сообщает об ошибке.

Поздравляю! Вы только что написали работающий транслятор!

Конечно, я понимаю, что он очень ограничен. Но не отмахивайтесь от него. Этот маленький «компилятор» в ограниченных масштабах делает точно то же, что делает любой большой компилятор: он корректно распознает допустимые утверждения на входном «языке», который мы для него определили, и производит корректный, выполнимый ассемблерный код, пригодный для перевода в объектный формат. И, что важно, корректно распознает недопустимые утверждения, выдавая сообщение об ошибке. Кому требовалось больше?

Имеются некоторые другие особенности этой маленькой программы, заслуживающие внимания. Во первых, вы видите, что мы не отделяем генерацию кода от синтаксического анализа… как только анализатор узнает что нам нужно, он непосредственно генерирует объектный код. В настоящих компиляторах, конечно, чтение в GetChar должно происходить из файла и затем выполняться запись в другой файл, но этот способ намного проще пока мы экспериментируем.

Также обратите внимание, что выражение должно где-то сохранить результат. Я выбрал регистр D0 процессора 68000. Я мог бы выбрать другой регистр, но в данном случае это имеет смысл.

Выражения с двумя цифрами

Теперь, давайте немного улучшим то, что у нас есть. По общему признанию, выражение, состоящее только из одного символа, не удовлетворит наших потребностей надолго, так что давайте посмотрим, как мы можем расширить возможности компилятора. Предположим, что мы хотим обрабатывать выражения вида:

1+2

или 4-3

или в общем  +/–  (это часть формы Бэкуса-Наура или БНФ.)

Для того, чтобы сделать это, нам нужна процедура, распознающая термы и сохраняющая результат, и другая процедура, которая распознает и различает «+» и «-» и генерирует соответствующий код. Но если процедура Expression сохраняет свои результаты в регистре D0, то где процедура Term сохранит свои результаты? Ответ: на том же месте. Мы окажемся перед необходимостью сохранять первый результат процедуры Term где-нибудь, прежде чем мы получим следующий.

В основном, что нам необходимо сделать – создать процедуру Term, выполняющую то что раннее выполняла процедура Expression. Поэтому просто переименуйте процедуру Expression в Term и наберите новую версию Expression:

{–}

{ Parse and Translate an Expression }

procedure Expression;

begin

Term;

EmitLn('MOVE D0,D1');

case Look of

'+': Add;

'-': Subtract;

else Expected('Addop');

end;

end;

{–}

Затем выше Expression наберите следующие две процедуры:

{–}

{ Recognize and Translate an Add }

procedure Add;

begin

Match('+');

Term;

EmitLn('ADD D1,D0');

end;

{–}

{ Recognize and Translate a Subtract }


Рекомендуем почитать
Как хорошему разработчику не стать плохим менеджером

В этой книге автор, сам прошедший путь от разработчика до менеджера в сфере IT, рассказывает неочевидные моменты, которые являются критически важными для правильного управления. Почему разработчики увольняются после повышения зарплаты? Как делать FixedPrice проекты? Почему Scrum не упрощает менеджмент? Книга содержит ответ на эти и многие другие вопросы. В книге есть много баек, которые показывают тяжёлую, но интересную жизнь менеджера в разработке. Иллюстратор обложки: Ксения Ерощенко. Иллюстрации в тексте книги авторские.


Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Язык PL/SQL

В учебно-методическом пособии рассматриваются основы языка программирования PL/SQL, реализованного в системе управления базами данных Oracle Database Server. Приводятся сведения о поддерживаемых типах данных, структуре программ PL/SQL и выполнении SQL-предложений в них. Отдельно рассмотрено создание хранимых в базах данных Oracle программ PL/SQL – процедур, функций, пакетов и триггеров.


Pro Git

Разработчику часто требуется много сторонних инструментов, чтобы создавать и поддерживать проект. Система Git — один из таких инструментов и используется для контроля промежуточных версий вашего приложения, позволяя вам исправлять ошибки, откатывать к старой версии, разрабатывать проект в команде и сливать его потом. В книге вы узнаете об основах работы с Git: установка, ключевые команды, gitHub и многое другое.В книге рассматриваются следующие темы:основы Git;ветвление в Git;Git на сервере;распределённый Git;GitHub;инструменты Git;настройка Git;Git и другие системы контроля версий.


Справочник по JavaScript

Вниманию читателей предлагается справочник по JavaScript.Справочник предназначается для людей, уже освоивших азы программирования в JavaScript.Справочник создан на основе информации, предоставленной на сайте «Справочник Web-языков» www.spravkaweb.ru.Дата выхода данной версии справочника: 12:33, 21 марта 2007.


Самоучитель UML

Самоучитель UMLПервое издание.В книге рассматриваются основы UML – унифицированного языка моделирования для описания, визуализации и документирования объектно-ориентированных систем и бизнес-процессов в ходе разработки программных приложений. Подробно описываются базовые понятия UML, необходимые для построения объектно-ориентированной модели системы с использованием графической нотации. Изложение сопровождается примерами разработки отдельных диаграмм, которые необходимы для представления информационной модели системы.