Цифровая стеганография - [31]

Шрифт
Интервал

3.6. Стегосистемы с бесконечными алфавитами

Результаты, приведенные выше, могут быть расширены на случай стегосистем с бесконечными алфавитами контейнеров и стего X и ключей K. Заметим, что стегосистемы с непрерывными сообщениями и ключами существенно отличаются от известных криптографических систем. Для бесконечномерных сигналов существуют криптосистемы, например, использующие частотные или временные преобразования речи или изображений. Системы шифрования, в которых криптографические преобразования осуществляются над непрерывными в пространстве или времени сигналами, называются маскираторами и, как правило, не обеспечивают высокой криптографической стойкости [27]. Забегая вперед, скажем, что в отличие от криптосистем, для стегосистем с бесконечными алфавитами известны доказуемые оценки их устойчивости к атакам нарушителя. К тому же маскираторы используют ключ конечной длины, элементы которого принадлежат дискретному алфавиту. И, вообще, представить себе произвольную криптосистему с ключом, элементы которого принадлежат бесконечному алфавиту, довольно затруднительно.

Расширим определение взаимной информации для переменных

и K стегосистемы, принадлежащих бесконечным алфавитам в виде [25]:



где дискретные переменные

и
, принадлежащие конечным алфавитам, аппроксимируют с некоторой допустимой погрешностью соответствующие непрерывные переменные. Если все функции плотности вероятности являются абсолютно непрерывными, то результаты из пункта 3.3 справедливы при замене соответствующих сумм интегралами.

Особый интерес имеет случай контейнеров , распределенных по нормальному закону и оцениваемых среднеквадратической погрешностью вида . Назовем этот случай гауссовским контейнером. Он позволяет точно оценит величину скрытой ПС. Пусть множество X совпадает с множеством действительных значений, математическое ожидание значений отсчетов контейнера равно нулю и их дисперсия равна . В дальнейшем будем использовать условное обозначение нормального распределения с математическим ожиданием

и дисперсией в виде
.

Рассмотрим два случая. В первом случае секретным ключом К стегосистемы является контейнер . Во втором случае контейнер получателю не известен (слепая система скрытия информации).

Случай негауссовского распределения

контейнера намного сложнее, но полезные результаты также могут быть получены. В частности, нижняя граница скрытой ПС может быть получена оценкой оптимальной атаки при конкретной, в общем случае подоптимальной, информационно-скрывающей стратегии . Нижние и верхние границы скрытой ПС могут быть вычислены оценкой оптимальной информационно-скрывающей стратегии при конкретной, в общем случае подоптимальной, атаке :


. (3.18)


Эти границы полезны для негауссовских контейнеров, полагая что распределения

и
выбраны соответствующим образом (см. пункт 3.8). Разумеется, если нижняя
и верхняя
границы в выражении (3.18) равны, пара распределений
дает седловую точку платежа в формуле (3.8).

3.6.1. Использование контейнера как ключа стегосистемы

Рассмотрим случай, когда в качестве секретного ключа стегосистемы используется описание контейнера. Соответственно, ключ-контейнер должен быть известен получателю скрываемого сообщения. Для этого случая теорема 3.6 определяет величину скрытой ПС стегоканала с бесконечным алфавитом контейнеров.

Назовем гауссовским атакующим воздействием воздействие нарушителя, при котором искаженное стего имеет нормальное распределение с математическим ожиданием, величина которого пропорциональна среднему значению стего, и дисперсией, величина которой пропорциональна искажению

.

Теорема 3.6: Пусть в стегосистеме с бесконечным алфавитом

используется среднеквадратическая мера погрешности вида
. При использовании контейнера
в качестве секретного ключа K:

1) если контейнер имеет нормальное распределение с нулевым средним и дисперсией , то при использовании оптимального скрывающего преобразования величина скрытой ПС равна


(3.19)


где

. Оптимальное скрывающее преобразование задается в виде
, где переменная Z имеет нормальное распределение с нулевым средним и дисперсией и независима от контейнера . Оптимальная атака нарушителя есть гауссовское атакующее воздействие с функцией распределения вида


(3.20)


2) если контейнер является негауссовским с нулевым средним и дисперсией

, то выражение (3.19) определяет верхнюю оценку скрытой ПС.

На рис. 3.6 представлена стегосистема с гауссовским контейнером и гауссовским атакующим воздействием. Скрываемое сообщение М преобразуется в последовательность Z с искажением кодирования не более . По условию последовательность Z описывается нормальным законом распределения с нулевым средним и дисперсией

и независима от гауссовского контейнера
. Нарушитель искажает стего X с помощью гауссовского атакующего воздействия. Для этого согласно рис. 3.6 на стего сначала накладывается шум W, описываемый нормальным законом распределения с нулевым средним и дисперсией
, тем самым формируя промежуточную последовательность
. Искаженное стего Y получается умножением последовательности V на коэффициент


Рекомендуем почитать
Юный техник, 2009 № 11

Популярный детский и юношеский журнал.


Юный техник, 2010 № 03

Популярный детский и юношеский журнал.


Юный техник, 2013 № 01

Журнал рассказывает о последних достижениях науки и техники, тайнах природы и мироздания, о важнейших открытиях и изобретениях. При журнале работает уникальное, единственное в мире детское «Патентное бюро», на страницах которого рассказывается об изобретениях ребят, анализируются их успехи и ошибки. Специалисты Патентного бюро помогают детям в оформлении настоящих, «взрослых» патентов.


Катастрофы в морских глубинах

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Разъезд Тюра-Там

После окончания в 1962 году Московского авиационного института Владимир Александрович Ковтонюк некоторое время работал на лётных испытаниях межконтинентальных баллистических ракет.О жизни испытателей в непростых условиях, о том, как усилия каждого из них, складываясь воедино, укрепляли государственную позицию на международной арене.О том, каким невероятным образом испытания ракет оказались вдруг связанными с гибелью советского вертолета во Франции, о любви, о розыгрышах и курьезах, о счастливых случайностях и драмах рассказывается в этой книге.Автор не претендует на документальное изложение событий, поэтому совпадения с реальными событиями и людьми случайны.


Последний рывок советских танкостроителей

Вашему вниманию представляется уникальный материал – дневник участника разработки танка нового поколения «Боксер». В дневниках А.А. Морозова, впервые опубликованных на сайте БТВТ содержалась уникальная информация о событиях в танкостроении СССР 60-х, 70-х годов, здесь же впервые представлена информация описывающая период 80-х по начало 90-х годов.