Что такое теория относительности - [13]
Предметы сокращаются
Итак, время, как мы только что убедились, сброшено со своего пьедестала абсолютного понятия, оно имеет относительный смысл, требующий точного указания тех лабораторий, в которых ведется измерение.
Обратимся теперь к пространству. Еще до описания опыта Майкельсона нами было выяснено, что пространство относительно. Несмотря на эту относительность пространства, мы все же приписывали размерам тел абсолютный характер, то есть считали, что они являются свойствами этого тела и не зависят от того, в какой лаборатории мы ведем наблюдение. Однако теория относительности заставляет нас распрощаться и с этим убеждением. Оно, как и представление об абсолютном времени, лишь предрассудок, возникший вследствие того, что мы всегда имеем дело со скоростями, ничтожно малыми по сравнению со скоростью света.
Представим себе, что поезд Эйнштейна проносится мимо станционной платформы, имеющей длину 2 400 000 километров.
Согласятся ли с этим утверждением пассажиры в поезде Эйнштейна? От одного конца платформы до другого поезд пройдет, по показаниям станционных часов, за 2 400 000 / 240 000 = 10 секунд. Но у пассажиров есть свои часы, и по ним движение поезда от одного конца платформы до другого займет меньше времени. Как мы уже знаем, оно будет равно всего б секундам. Из этого пассажиры с полным правом заключат, что длина платформы вовсе не 2 400 000 километров, а 240 000 X 6 = 1 440 000 километров.
Мы видим, что длина платформы, с точки зрения покоящейся относительно нее лаборатории, больше, чем с точки зрения лаборатории, относительно которой эта платформа движется. Всякое движущееся тело сокращается в направлении своего движения.
Однако это сокращение отнюдь не является признаком абсолютности движения: стоит нам поместиться в лаборатории, покоящейся относительно тела, как оно вновь удлинится. Совершенно так же пассажиры найдут, что платформа сократилась, а стоящим на ней людям покажется, что сократился поезд Эйнштейна (в отношении 6:10).
И это будет не обман зрения. То же самое покажут любые приборы, которыми можно воспользоваться, чтобы измерить длину тел.
В связи с обнаруженным сокращением предметов мы должны теперь ввести поправку в наши рассуждения на стр. 39 о времени открывания дверей в поезде Эйнштейна. Именно когда мы вычисляли момент открывания дверей, с точки зрения наблюдателей на станционной платформе, мы считали, что длина движущегося поезда будет такой же, как и покоящегося. Между тем для людей на платформе длина поезда сократилась. Соответственно этому промежуток времени между открыванием дверей, с точки зрения станционных часов, будет в действительности равен не 40 секундам, а всего (6 / 10) X 40 = 24 секундам.
Рисунки, которые помещены на стр. 61, изображают поезд Эйнштейна и станционную платформу, как они представляются наблюдателям на станции и в поезде. Мы видим, что на правом рисунке платформа длиннее поезда, а на левом — поезд длиннее платформы.
Какая из этих картин соответствует действительности?
Вопрос так же лишен смысла, как и вопрос о пастухе и корове на стр. 7.
И то и другое — картины одной и той же объективной действительности, «сфотографированные» с различных точек зрения.
Скорости капризничают
Какую скорость имеет пассажир относительно полотна железной дороги, если он идет к голове поезда со скоростью 5 километров в час, а поезд движется со скоростью 50 километров в час? Ясно, что скорость человека относительно полотна дороги равна 50 + 5 = 55 километрам в час. Рассуждение, которым мы при этом пользуемся, основывается на законе сложения скоростей, и в правильности этого закона у нас не возникает сомнений. В самом деле, за час поезд пройдет 50 километров, а человек в поезде — еще 5 километров. Итого 55 километров, о которых мы говорили.
Вполне понятно, что существование в мире предельной скорости лишает закон сложения скоростей его универсальной применимости к большим и малым скоростям. Ведь если пассажир движется в поезде Эйнштейна со скоростью, скажем, 100 000 километров в секунду, то скорость его относительно полотна железной дороги не может быть равной 240 000 + 100 000 = 340 000 километров в секунду, потому что эта скорость превосходит предельную скорость света и, следовательно, не может существовать в природе.
Таким образом, закон сложения скоростей, которым мы пользуемся в повседневной жизни, оказывается неточным. Он справедлив лишь для скоростей, достаточно малых по сравнению со скоростью света.
Читатель, привыкший уже ко всяким парадоксам теории относительности, легко поймет причины неприменимости, казалось бы очевидного, рассуждения, при помощи которого мы только что вывели закон сложения скоростей. Ведь для этого мы сложили расстояние, пройденное в один час поездом по полотну и пассажиром в поезде. Но теория относительности показывает нам, что эти расстояния складывать нельзя. Это было бы так же нелепо, как если бы для того, чтобы определить площадь поля, изображенного на этой странице, мы перемножили бы длины отрезков АВ и ВС, забыв, что последний, вследствие перспективы, на рисунке искажен. Кроме того, для определения скорости пассажира по отношению к станции мы должны определить путь, пройденный им за час по станционному времени, в то время как для установления скорости пассажира в поезде мы пользовались поездным временем, что, как нам уже известно, совсем не одно и то же.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.
Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В очередном выпуске серии «Научно-популярная библиотека» рассказывается о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного воздействия. В начале книги даются основные сведения об электричестве.