Что такое наука, и как она работает - [24]

Шрифт
Интервал

Как могли ученые изучать физические свойства вещей, которые существовали только в их воображении? Прежде всего нам нужно согласиться с более широким философским представлением о том, что в нашем воображении нет ничего предсказывающего, независимо от того, насколько хорошо наши постулируемые теории объясняют наблюдения. Предложить ненаблюдаемую сущность для объяснения наблюдаемых явлений — отнюдь не то же самое, что продемонстрировать ее существование. Ни один ученый никогда напрямую не наблюдал электрон, атом или бозон Хиггса, но мы с уверенностью заявляем, что они существуют, потому что можем изучить предсказанные эффекты их существования. Фактически мы заменили абстрактное понятие флогистона столь же абстрактным понятием кислорода, и хотя предположение о существовании кислорода объясняет больше наших наблюдений, чем флогистон, оно не менее абстрактно. Мы чувствуем себя уверенно, изучая такие объекты, но в конце концов каждый из этих объектов с философской точки зрения не отличается от флогистона. Ученые изучают явления, но при этом говорят с точки зрения научных объектов. Важно помнить, что многие научные объекты, изучаемые наукой, всегда будут страдать от уязвимости недоказуемого существования. Вот почему, когда кто-то постулирует исходные предпосылки, а затем строит теории с огромной предсказательной силой (например, Евклид и Ньютон), нельзя использовать успех теории как доказательство того, что посылки на самом деле верны. Они могут быть правильными, но их нельзя доказать; сколько раз случалось за историю науки, что «известные» научные объекты и общепринятые научные предпосылки и принципы позже оценивались как не существующие нигде, кроме воображения ученых.

В первых двух главах мы рассмотрели общую логическую структуру гипотетико-дедуктивного мышления, которое является одним из способов представления науки (если не того, как она фактически работает). Учитывая внутренние недостатки в каждой из его составных частей (индукция, дедукция и ретродукция), а также наблюдение, что эти недостатки почти не компенсируют друг друга, неудивительно, что само ГДМ обладает совокупностью недостатков своих компонентов, а то и новыми недостатками. Однако это лишь начало нашего исследования науки. Люди в целом и ученые в частности не мыслят в рамках отдельных, индивидуальных систем ГДМ. Конструкции убеждений человека представляют собой сложную систему причин и следствий, начиная от очень практических и фундаментальных (почему я чувствую голод, почему моя машина не заводится, каковы правила моего мира, как физические, так и социальные?) до возвышенных и абстрактных (каковы истоки Вселенной, в чем смысл жизни, почему мы существуем?). В нас одновременно уживаются многочисленные и сложные конструкции убеждений, которые пересекаются и влияют друг на друга. В следующей главе мы исследуем особенности систем мышления, которые возникают при объединении нескольких меньших ГДМ-систем в более масштабное мировоззрение.

Глава 3.

Согласованность научного мышления как системы рассуждений

Самая многообещающая фраза, которую можно услышать от ученых и предшествующая большинству открытий, — это не «Эврика!» (я нашел!), а «Хм... это странно...».

— Айзек Азимов


В предыдущих главах мы рассмотрели общую картину гипотетико-дедуктивного мышления, с помощью которого можно предсказать явления на основе гипотез и установить достоверность гипотез путем исследования, действительно ли происходят предсказанные явления. Если явление произошло, значит, теория верна; если явление не наблюдается, значит, теория ошибочная. На первый взгляд это выглядит довольно просто, и именно так наука, похоже, воспринимается не только обывателями, но и некоторыми учеными. К сожалению, это не так. Этот, казалось бы, очевидный подход отличается от того, как на самом деле работает наука, и это неправильное восприятие является одновременно следствием искажения и недопонимания. Причина недопонимания будет выяснена позже; а сейчас мы подумаем, почему проверка гипотез не так проста, как кажется. Вряд ли можно назвать что-то более важное для правильного определения науки, чем глубокое понимание этого вопроса. Это может показаться странным, но есть серьезные проблемы с определением того, как данные подтверждают гипотезу и как данные опровергают ее, — на самом деле не совсем понятно и вовсе не бесспорно, какие именно доказательства должны быть приняты в том и другом случаях.

Проблема подтверждения гипотезы

Сами ученые часто ссылаются на данные, подкрепляющие или даже доказывающие идею, но вопрос о том, что представляет собой подтверждающее свидетельство (и в какой мере оно подтверждает), остается открытым. Вопрос о подтверждении наиболее глубоко изучен в основополагающих работах[43] Карла Хемпеля. Рассмотрим гипотезу о том, что все вороны черные (как это сделал Хемпель). Исходя из этой гипотезы, можно однозначно предсказать, что каждый раз, когда кто-то видит ворона, это будет черная птица. Если кто-то видит черного ворона, «доказывает» ли это гипотезу? Разумеется, нет. Чтобы доказать гипотезу подтверждающими примерами, нужно проверить цвет каждого ворона в настоящем, прошлом и будущем. Если кто-то заключит, что все вороны черные, после наблюдения за каждым вороном, кроме одного, гипотеза все равно не будет «доказана» — этот последний ворон вполне может оказаться зеленым. Это прежняя проблема создания обобщенных утверждений на основе конечных наблюдений, с которой мы столкнулись при описании индукции в главе 1. Следовательно, проблемы подтверждения имеют сходство с проблемами индукции, только с более очевидной практической направленностью


Рекомендуем почитать
Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Десять самых красивых экспериментов в истории науки

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.


Безопасность жизнедеятельности. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать. Пособие предназначено для студентов высших и средних образовательных учреждений.