Что, если Ламарк прав? Иммуногенетика и эволюция - [37]

Шрифт
Интервал

Исследования на молекулярном уровне показали, что ферменты, участвующие в репликации ДНК, способны к редактированию и исправлению ошибок. Возникновение мутаций в ходе репликации ДНК — редкое событие (рис. 5.2). Максимальная частота таких мутаций, вероятно, меньше, чем 10>-8, а истинная частота ошибок, вероятно, еще меньше — около 10>-10 (меньше, чем одна на 10 миллиардов реплицированных оснований). Чрезвычайно высокая точность копирования информации обеспечивается ДНК-полимеразой («машиной, копирующей ДНК»), которая по мере продвижения вдоль матричной ДНК-цепи проверяет, нет ли ошибок во вновь синтезированной копии. О наличии ошибок она «узнает» по искажению двойной спирали ДНК, которое имеет место, если Т соединится с G или С с А. Обнаружив такой участок, ДНК-полимеразный ферментный комплекс вырезает неправильное основание (или группу оснований) и вставляет то, которое должно быть на этом месте (законное основание). Скорость точной репликации у бактерий примерно 500 оснований в секунду, а у высших клеток (включая клетки человека) около 50 оснований в секунду. ДНК хромосом высших клеток много длиннее, а сами хромосомы устроены намного сложнее, чем маленькие и простые бактериальные геномы. У высших клеток, в отличие от бактерий, ДНК в хромосомах образует комплекс с белками (гистонами), которые участвуют в сворачивании длинных нитей ДНК в серию петель, для того чтобы их можно было упаковать внутри ядра. Репликация ДНК начинается одновременно в нескольких сайтах (точках) каждой хромосомы, поэтому большой набор ДНК-последовательностей реплицируется за 5—20 ч.

Рис. 5.2. Частота ошибок при синтезе ДНК и РНК. Примечание: о частоте ошибок судят по частоте включения неправильного основания на одно основание за одно событие копирования (см. также рис. 2.4); дц=двухцепочечная, оц = одноцепочечная.

Вспомним, что в гл. 2 мы уже обсуждали высокий уровень ошибок при образовании РНК по матрице ДНК (транскрипции) и при образовании ДНК по матрице РНК (обратной транскрипции). Оба этих типа копирования характеризуются частотой точковых мутаций Ю->3—Ю->4, что существенно выше, чем частота ошибок при репликации ДНК (от Ю->8 до Ю->9). Неточность, большое число ошибок имеют место и при репликации генома РНК-содержащих вирусов, например, вируса гриппа. Этим объясняется быстрое генетическое изменение вируса, приводящее к пандемиям гриппа. В жизненном цикле вируса СПИДа (ВИЧ) чередуются неточные процессы копирования РНК -> ДНК (на стадии интеграции) и ДНК -> РНК (на стадии экспрессии в течение инфекционного цикла). Для этого вируса также характерна высокая частота мутаций. Таким образом, все процессы копирования, включающие одноцепочечные РНК-посредники (превращение РНК в ДНК и наоборот), идут с большим числом ошибок, при этом репарация последовательности невозможна, поскольку ферменты, осуществляющие такое неточное копирование полинуклеотидов (РНК-полимераза, обратная транс -криптаза и РНК-репликаза), как оказалось, не имеют функций проверки и исправления ошибок.

Все сказанное выше означает, что какая-то доля мутаций в ДНК может возникать в результате ошибок копирования, включающего промежуточные РНК-посредники (рис. 5.2).

Мутации, которые передаются потомкам, появляются с низкой частотой. Они возникают в половых клетках и называются генеративными. Это редкие ошибки, которым удалось ускользнуть от «проверок» ДНК-полимеразы во время репликации ДНК и упаковки ее в гаметы самцов и самок (сперматозоиды и яйцеклетки). Они могут вызывать дефекты (т. е. влиять на фенотип и состояние здоровья индивида). Например, в случае серповидцоклеточной анемии такая мутация обуславливает тяжелую патологию у гомозигот (у которых обе копии гена дефектны) и более легкую форму болезни у гетерозигот, потому что белковый продукт нормальной копии гена частично компенсирует отрицательный эффект дефектной копии.

Однако существуют варианты некоторых генов (альтернативные формы генов называют аллелями), которые не влияют на здоровье индивида, у которого они проявляются. Эти варианты составляют нормальную изменчивость в популяциях организмов, существующую, по предположению Дарвина, до того, как начинает действовать естественный отбор. Важный вопрос: как появляются эти «добрые» аллели?. Согласно неодарвинистским представлениям, все эти аллели возникли в результате случайных мутаций в ДНК зародышевой линии и сохранились в популяции (так называемом «пуле генов») вследствие естественного отбора. В гл. 7 мы постараемся дать альтернативное объяснение этого феномена в рамках теории обратной связи соматических и половых клеток.

Предполагают, что рост числа врожденных аномалий и спонтанных абортов вызван факторами окружающей среды, такими как загрязнение токсическими химическими веществами. Например, резкое повышение частоты врожденных аномалий зарегистрировано в городах, расположенных вокруг сильно загрязненного, гибнущего Аральского моря. Такие же данные имеются относительно ветеранов вьетнамской войны и жителей северного Вьетнама, подвергшихся воздействию токсичных дефолиантов. Вещества, которые действуют на гены, изменяя кодирующую ДНК-последовательность, называются мутаге-нами. Возможно, их действие основано на том, что они нарушают нормальный процесс репарации. Установлено, что в клетках бактерий и эукариот, в которых индуцировано большое число повреждений ДНК, включается склонная к ошибкам репарация.


Рекомендуем почитать
Нейромифология. Что мы действительно знаем о мозге и чего мы не знаем о нем

Все занимаются исследованиями мозга. Едва ли найдется научная дисциплина, которая откажется «модернизировать» себя, добавив «нейро» к названию. Детища этого стремления – нейротеология, нейроэкономика, нейроправо и нейроэстетика. Жертва его – наш мир, который пытаются представить в категориях из области исследований мозга. Я – это мой мозг? Или только биоавтомат? Эта книга ставит под сомнение значимость нейроисследований. Нить доказательств автора ведет к постулату: дидактический апломб нейронаук непропорционален их фактической познавательной способности; громкие прогнозы и теории балансируют на весьма тонкой основе надежных эмпирических данных, и только разрастающаяся масса вольно истрактованных результатов не дает им рухнуть.


Те, кто делает нас лучше

В этой потрясающей, поэтической и жизнеутверждающей книге финалистка Национальной книжной премии США Сай Монтгомери рассказывает о 13 животных – ее друзьях, сыгравших важную роль в ее жизни.      Каждое животное замечательно, и совершенно по-своему. Просто находиться рядом с любым животным – это уже урок, потому что все они умеют что-то, чего не могут люди. Общение с созданиями, принадлежащими к другим видам, удивительным образом обогащает душу. Никто не знает этого лучше, чем автор, натуралист и искатель приключений Сай Монтгомери.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Жуткая биология для безнадежных гуманитариев. Вампировые летучие мыши, пиявки и прочие кровососущие

Билл Шутт – бывший профессор биологии в LIU-Post и научный сотрудник в Американском музее естествознания. Мир кровожадных животных, который открывает Билл Шутт, отправит вас в омерзительно-увлекательное путешествие, где вампировые летучие мыши, пиявки и прочие кровососущие станут главными героями почти детективных историй. Это одновременно самая пугающая и забавная книга о биологии и истории. Вряд ли вы где-нибудь еще прочтете такой подробный рассказ о жизни кровожадных животных и насекомых.


Сафари по коже. Удивительная жизнь органа, который у всех на виду

Кожа человека – удивительный орган, один из немногих, которые мы можем увидеть и тем более потрогать. Но несмотря на кажущуюся доступность, знаем мы о ней еще очень мало. Например, каким было отношение к коже в XVIII, XIX, XX веках и какое оно в современном мире, почему у одних народов принято прятать кожу под слоями одежды, а другие носят лишь набедренные повязки. Вместе с Монти Лиманом, врачом-дерматологом, вы погрузитесь в мир кожи, узнаете ее устройство и скрытые физиологические процессы, разберетесь в механизмах старения и волшебстве касаний, познакомитесь с населением кожи – микробиомом, узнаете о заболеваниях и способах лечения, а также разберетесь, как кожа связана с нашим мозгом и сознанием, узнаете больше о ее социальной и духовной стороне.


Я или не я

Академик АМН СССР рассказывает об иммунитете, силах, которые защищают наш организм от микробов, вирусов, раковых заболеваний, хранят неповторимую индивидуальность нашего телесного 'я', говорит о болезнях, возникающих при нарушении иммунитета и мерах борьбы с ними, а также об использовании клеток иммунной системы в биотехнологии (производстве лечебных и диагностических препаратов, сверхчувствительных реагентов), об использовании 'раковых клеток в мирных целях'. Издание рассчитано на самые широкие круги читателей.


Нераскрытые тайны природы

В книге известного американского писателя рассматривается широкий спектр явлений, не получивших в рамках современной науки своего объяснения. Автором выделены более 20 таких загадок, в том числе: дает ли история Большого Взрыва исчерпывающее объяснение процесса возникновения Вселенной; возникла жизнь на Земле или была занесена из космоса; какова природа гравитации; сможем ли мы когда-нибудь предсказывать землетрясения и извержения вулканов; каков возраст Вселенной; существуют ли множественные миры; каково будущее Вселенной; не были ли динозавры теплокровными животными; как ориентируются птицы в процессе своих дальних миграций; откуда черпали индейцы майя свои познания в астрономии.Для широкого круга читателей.