Что, если Ламарк прав? Иммуногенетика и эволюция - [13]
Б. Первый этап репликации ДНК заключается в локальном раскручивании двойной спирали, в результате которого матричные последовательности становятся доступными для копирования (этот участок называется вилкой репликации). Затем сложный набор белковых ферментов, включая ДНК-полимеразу, копирует каждую цепь, синтезируя комплементарную цепь (скорость копирования примерно 1000 оснований в секунду). Синтез всегда идет в направлении от 5'- к 3'-концу. Когда процесс достигает конца матричной молекулы, каждая из двух дочерних нитей состоит из одной новой цепи и одной родительской.
В. Отдельные участки ДНК-последовательности копируются или в мРНК, которая кодирует специфическую последовательность аминокислот (см. приложение), или в рибосомную РНК (рРНК), или в транспортную РНК (тРНК), которые являются частью молекулярного механизма, необходимого для трансляции мРНК в белок (см. приложение). РНК-по-лимераза копирует матричную цепь ДНК (чтобы это могло произойти, необходимо локальное раскручивание спирали ДНК). Синтез РНК также идет в направлении от 5'- к 3'-концу, так что матричная цепь ДНК имеет антипараллельную ориентацию от 3' к 5'. Последовательность оснований за кодирующим участком гена определяет терминацию (конец) синтеза РНК.
Самое важное — это то, что последовательность оснований ДНК определяет комплементарную последовательность РНК. Процесс синтеза на ДНК-последовательности соответствующей РНК-последовательности называется транскрипцией. На рис. 2.4 обратите внимание, что движение генетической информации происходит в направлениях ДНК -> РНК -> белок.
Также обратите внимание на то, что РНК-последовательность может служить матрицей для синтеза ДНК-последовательности (обратная транскрипция), а последовательность аминокислот в белке никогда не служит матрицей для обратного потока информации от белковой последовательности к РНК.
Все это еще не дает ответа на поставленные в начале вопросы. Как последовательность ДНК, переписанная в последовательность РНК (которая называется информационной РНК, или мРНК), переводится в белок? Большая часть данных, отвечающих на этот вопрос, получена М. Ниренбергом и Г. Кора-ной в начале 1960-х годов. По мере накопления информации становилось ясным, что процесс синтеза аминокислотной последовательности по триплетному коду мРНК чрезвычайно сложен. Этот процесс назвали трансляцией (от англ. translation — перевод). В общем виде он описан в приложении. Информационная РНК выходит из ядра в цитоплазму, где она транслируется в соответствующую последовательность аминокислот (белок). Она напоминает компьютерную ленту, подающуюся через устройство, которое считывает по три основания одновременно. Каждый триплет оснований определяет одну аминокислоту. «Читающее устройство» клетки называется рибосомой — это молекулярная органелла, состоящая из РНК и белков. Рибосома транслирует (переводит) мРНК в белковую последовательность — линейную цепочку аминокислот. Функциональным белком эта цепочка становится только после того, как примет определенную трехмерную устойчивую форму.
Рис. 2.5. ДНК, РНК и белки имеют трехмерную структуру. На уровне генетической (нуклеотидной) и белковой (аминокислотной) информации часто удобно рассматривать линейные последовательности (слева); на уровне функции в клетке все эти молекулы имеют сложную трехмерную структуру.
А.Двухцепочечная ДНК — это правозакрученная спираль. Однако существует и более сложная укладка, особенно в высших клетках, позволяющая компактно упаковывать хромосомы внутри ядра. В зависимости от стадии клеточного цикла, спирали образуют комплексы с разнообразными белками, многие из которых определяют, какие гены будут транскрибироваться в мРНК.
Б.Одноцепочечные молекулы РНК могут складываться в сложные структуры с локальными спариваниями оснований комплементарных последовательностей. Эта вторичная структура особенно важна для функционирования транспортных и рибосомных РНК.
В. Аминокислотные последовательности белка принимают сложную пространственную структуру.
Генетический код, насколько известно до сих пор, универсален для всех живьк организмов на Земле: от мельчайших вирусов и бактерий до растений и животных. В ходе эволюции жизни на Земле около 3—4 млрд. лет назад этот код был отобран как оптимальный механизм переноса информации, приводящий к образованию белка, и с тех пор ни разу не был ни изменен, ни заменен. В противоположность этому современные компьютерные программы постоянно обновляются и заменяются. Очень интересны рассуждения Лесли Оргела (Orgel) и Фрэн-сиса Крика о возникновении генетического кода, опубликованные примерно 25 лет назад. Они полагают, что сложный молекулярный аппарат, требующийся для транслирования РНК в белок, мог быть занесен на Землю живыми организмами (бактериями) откуда-то из Вселенной — или кометами, или космическим кораблем из сверхразумной цивилизации. Варианты этой идеи отстаивают и астрофизики Фред Хойли (Hoyle) и Чандра Викрамасинг (Wickramasihghe) в книгах Life Cloud (Облако жизни) и Our Place in the Cosmos (Наше место во Вселенной) (рис. 1.4).
В книге американского профессора Роберта Возняка в предельно лаконичной форме рассматривается история развития научных представлений о проблеме мозга и сознания за последние 500 лет.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Главное внимание автор уделил людям – своим героям, дальневосточным рыбакам, живущим и работающим на этих «физически и морально устаревших» железяках и успешно кормящих страну. Автор провёл с ними в море более половины этого самого ПОЛУВЕКА.Книга будет полезна курсантам училищ, студентам и преподавателям вузов, научным сотрудникам и всем, кто специализируется в областях, связанных с рыбным хозяйством.
Александр Иванович Опарин — член-корреспондент Академии наук СССР, один из ведущих биохимиков Советского Союза.Основные экспериментальные работы А. И. Опарина посвящены изучению обмена веществ у растений.А. И. Опарин — основатель особой отрасли знания: технической биохимии.Происхождение жизни — это та проблема, над которой А. И. Опарин работает уже в течение 25 лет и в области которой он является признанным авторитетом не только у нас, но и за рубежом. Его перу принадлежит ряд книг и популярных брошюр по этому вопросу, многие из них переведены на иностранные языки.А.
Книга известного ученого состоит из коротких новелл, рассказывающих о разнообразной и многоликой природе пустыни. Внимание автора привлекают главным образом мелкие обитатели пустынь Средней Азии: муравьи, пауки, клещи, гусеницы и бабочки, жуки, пчелы и осы. Мир этих существ пока еще мало известен, а потому наблюдения за ним не только интересны, но и весьма полезны.
В книге рассказывается о роли Солнца и солнечного света в возникновении и развитии жизни на Земле, в процессах фотосинтеза. Анализируются физическая природа и особенности действия на организм видимого света, ультрафиолетовых и инфракрасных лучей; рассматривается влияние физических процессов, протекающих в недрах Солнца, на ритм разнообразных процессов в биосфере. Особое внимание автор уделяет изучению воздействия солнечных лучей на организм человека.Утверждено к печати редколлегией серии научно-популярных изданий Академии наук СССР.
В книге известного американского писателя рассматривается широкий спектр явлений, не получивших в рамках современной науки своего объяснения. Автором выделены более 20 таких загадок, в том числе: дает ли история Большого Взрыва исчерпывающее объяснение процесса возникновения Вселенной; возникла жизнь на Земле или была занесена из космоса; какова природа гравитации; сможем ли мы когда-нибудь предсказывать землетрясения и извержения вулканов; каков возраст Вселенной; существуют ли множественные миры; каково будущее Вселенной; не были ли динозавры теплокровными животными; как ориентируются птицы в процессе своих дальних миграций; откуда черпали индейцы майя свои познания в астрономии.Для широкого круга читателей.