Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - [64]

Шрифт
Интервал

«Неравноправие» кислот связано с источниками их получения – «четные» кислоты были впервые выделены из природных объектов, которые и дали им названия. Скажем, лауриновая кислота (раньше ее называли лавровой) содержится в больших количествах (до 45 %) в лавровом масле. Миристиновая кислота преобладает в масле растений семейства миристиковых, например в ароматных семенах мускатного дерева – мускатном орехе. Пальмитиновую кислоту легче всего выделить из пальмового масла, выжимаемого из ядер кокосового ореха (копры). Это масло почти целиком состоит из глицерида пальмитиновой кислоты. Название стеариновой кислоты происходит от древнегреческого στέαρ («жир, сало»). Вместе с пальмитиновой она относится к наиболее важным жирным кислотам и составляет главную часть большинства растительных и животных жиров. Из смеси этих кислот (стеарина) раньше изготовляли свечи. Арахиновая кислота встречается в масле земляного ореха – арахиса. По масштабам производства оно занимает одно из первых мест среди всех пищевых масел, но собственно арахиновой кислоты в нем мало – всего несколько процентов.

«Нечетные» же кислоты с числом углеродных атомов больше десяти химики в природе не находили, их приходилось синтезировать в небольших количествах в лабораториях, и называли их просто по названию соответствующего углеводорода, т. е. с использованием греческих числительных. В течение долгого времени такие кислоты не представляли большого интереса; в соответствии с важностью «четных» и «нечетных» кислот для живых организмов им посвящено неодинаковое число исследований: свойства «четных» кислот изучены значительно лучше, чем «нечетных», и это, естественно, нашло отражение в химической литературе.

Значительное преобладание «четных» кислот в природе («нечетные» в составе жиров и масел тоже встречаются, но в очень малых количествах) связано с особенностями их биосинтеза: он начинается с производного уксусной кислоты – так называемого ацетилкофермента А (два атома углерода), и на каждой стадии синтеза к растущей цепи присоединяется также фрагмент, содержащий два атома углерода. Лишь в отдельных случаях биосинтез жирных кислот начинается с производного пропионовой кислоты (три атома углерода); тогда у кислот нечетное число атомов углерода.

3. При декарбоксилировании карбоновых кислот образуются углеводороды (парафины) с числом атомов углерода в молекуле на единицу меньше. Поэтому из четных карбоновых кислот должны образоваться нечетные углеводороды. Действительно, в углеводородах, выделенных из торфа, который содержит большое количество не полностью разложившихся органических остатков, «нечетных» молекул действительно преобладающее количество – более 92 %. Однако дальнейшая деструкция органических остатков (уже не жирнокислотных) приводит к появлению как четных, так и нечетных углеводородов примерно в равных количествах. Так, в углеводородах молодых осадочных пород все еще преобладают нечетные – их там от 75 до 90 %; в бурых углях нечетных углеводородов уже меньше – от 62 до 77 %, а в каменных углях обычно наблюдается примерно равное соотношение нечетных и четных углеводородов.

В «молодых» нефтях все еще преобладают нечетные углеводороды (около 80 %), что является одним из важных доводов в пользу биологического происхождения нефти. В более древних отложениях, возраст которых исчисляется многими миллионами лет, в результате различных химических превращений происходит «созревание» нефти, следствием которого является постепенное выравнивание количества нечетных и четных углеводородов.

«Сказка о черном кольце»

Правильный ответ – г. Резина содержит серу (она используется для вулканизации каучука); выделяющаяся понемногу из резины сера при контакте с серебром превращает его в черный сульфид: Ag + S → Ag>2S.

Гости редкие и частые

Правильный ответ – г. Соли калия обычно значительно менее растворимы, чем соли натрия, поэтому их легче и дешевле получить в промышленности (например, меньше расходы на упаривание воды).

Тридцать три несчастья

Препарат, без остатка разложившийся в сушильном шкафу, мог быть гидрокарбонатом аммония NH>4HCO>3. Это вещество даже при комнатной температуре постепенно разлагается и улетучивается: NH>4HCO>3 → NH>3 + CO>2 + H>2O. При нагреве скорость разложения значительно увеличивается. Соль, которую не удалось перекристаллизовать, могла быть нитритом аммония. При нагревании в твердом виде или в растворе эта соль разлагается: NH>4NO>2 → N>2 + 2H>2O. Эту реакцию можно использовать для получения в лаборатории чистого азота. Важно отметить, что очень похожее вещество – нитрат аммония NH>4NO>3 – перекристаллизовать удастся. В отличие от нитрита, разлагающегося при 70 ℃, нитрат начинает разлагаться при температуре порядка 200 ℃.

«Ты взвешен на весах и найден очень легким…»

Взвешивая ампулу, студент не учел, что на вакуумированную и вскрытую ампулу действуют разные архимедовы силы; их разность равна весу воздуха в ампуле. (Архимедова сила, действующая на осколки стекла, очень мала, и ею можно пренебречь.) Значит, первое взвешивание (продукт + стекло) надо было проводить после вскрытия ампулы. Из молярной массы воздуха (около 29 г/моль) получаем по уравнению идеального газа плотность воздуха при нормальных условиях 1,29 г/л (или мг/см


Еще от автора Илья Абрамович Леенсон
Удивительная химия

В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения о химической науке, величайших открытиях ученых-химиков, загадочных фактах и уникальных химических экспериментах.Для школьников, студентов и учителей, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов химию.


Чудесного холода полный сундук

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная химия для детей и взрослых

Автор этой книги, доцент химического факультета МГУ, написал ее для всех любознательных людей. "Наука начинается с удивления", – сказал Аристотель. Прочитав сей труд, вы не раз удивитесь. А заодно узнаете, как работают в автомобиле подушки безопасности, из каких металлов делают монеты разных стран, какие бывают в химии рекорды, почему лекарство может оказаться ядом, как химики разоблачают подделки старинных картин, как журнальная шутка лишила победы "знатоков" в известной телевизионной игре "Что? Где? Когда?", а также многое другое.


Язык химии. Этимология химических названий

Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.