Черные дыры и складки времени. Дерзкое наследие Эйнштейна - [6]

Шрифт
Интервал

«Какое же расстояние от горизонта до сингулярности?» — спрашиваете вы себя. (Конечно, вы не собираетесь измерять его непосредственно, такое измерение было бы самоубийством; вы никогда не сможете выбраться из-под горизонта, чтобы доложить результаты Всемирному географическому обществу.) Из-за того что сингулярность очень мала, 10>-33 сантиметра, и находится точно в центре дыры, расстояние от сингулярности до горизонта должно быть равно радиусу горизонта. Вам очень хочется вычислить этот радиус стандартным методом, поделив длину окружности на 2п (6,2831805307...). Однако когда вы учились на Земле, вас предупредили не доверять подобным расчетам. Огромное гравитационное тяготение дыры полностью искажает геометрию пространства внутри и вблизи дыры>17, подобно тому, как тяжелый камень, положенный на резиновую пленку, изменит геометрию листа (рис. П.З), в результате чего радиус горизонта не будет равен длине окружности, деленной на 2л.

«Ничего страшного, — говорите вы себе, — Лобачевский, Риман и другие великие математики научили нас рассчитывать свойства окружностей и в искривленном пространстве, а Эйнштейн ввел эти расчеты в свою общую теорию относительности для законов гравитации. Я могу использовать эти формулы искривленного пространства для вычисления радиуса горизонта».

Но потом, припоминая то, что узнали во время подготовки на Земле, вы понимаете, что хотя масса дыры и ее угловой момент определяют все свойства горизонта дыры и окружающего пространства, они ничего не говорят о внутренних свойствах дыры. Общая теория относительности настаивает, что внутренность дыры, вблизи

сингулярности, должна быть хаотична и сильно несферична>18, также как центр резиновой пленки на рис. П.З, если тяжелый камень имеет неровную форму и непрерывно дергается вверх и вниз. Более того, хаотичная природа ядра дыры будет зависеть не только от массы звезды и ее углового момента, но и от всех деталей схлопывания дыры, при котором родилась дыра, а также от истории последующего падения на дыру межзвездного газа — всех деталей, которые вам неизвестны.

«Ну и ладно, — решаете вы, — какая бы ни была ее структура, хаотичное ядро должно иметь длину окружности много меньше сантиметра. Итак, я сделаю небольшую ошибку, если вообще пренебрегу им, когда буду вычислять радиус горизонта».

Но затем вы вспоминаете, что пространство вблизи сингулярности может быть деформировано так сильно, что хаотичный участок может иметь радиус в миллионы километров, хотя длина его окружности

будет составлять только долю сантиметра. Точно так же тяжелый камень на рис. П.З может сколь угодно глубоко вниз вытянуть острый неровный конус резиновой пленки, оставляя в то же время длину его окружности малой. Ошибки в наших вычислениях радиуса могут быть поэтому огромными. Радиус горизонта просто-таки не может быть вычислен из той скудной информации, которой вы владеете: масса дыры и ее угловой момент.

Оставив размышления по поводу внутренностей черной дыры, вы готовитесь исследовать окрестности ее горизонта. Не желая рисковать человеческой жизнью, вы просите 10-сантиметрового робота Арнольда, оснащенного ракетными двигателями, провести для вас исследования и передать результаты назад на звездолет. У Арнольда простые инструкции: прежде всего он должен запустить ракетные двигатели так, чтобы погасить первоначально общую со звездолетом скорость орбитального движения, а затем выключить двигатели и позволить гравитации дыры затянуть его вниз. Во время падения Арнольд направит ярко-зеленый лазерный луч в сторону звездолета и закодирует в этом луче информацию о пройденном расстоянии и о состоянии его электронной системы, так же как радиостанция кодирует передачи на радиоволнах.

Команда звездолета примет лазерный луч, а Карес декодирует передачу, получив информацию от робота. Она также измерит длину волны луча (или, что то же самое, его цвет; см. рис. П.2). Знание длины волны очень важно: она будет нести информацию о скорости движения Арнольда. Поскольку он будет двигаться все быстрее и быстрее, удаляясь от звездолета, принятый на корабле первоначально зеленый цвет луча под действием эффекта Доплера>14 будет смещаться во все более длинноволновую область, т. е. он будет становиться все более и более красным. Кроме того, есть дополнительный сдвиг в красную область, обусловленный борьбой луча с силой гравитационного тяготения дыры. Вычисляя скорость Арнольда, Карес должна внести поправку на это гравитационное красное смещение>15.

Итак, эксперимент начинается. Арнольд форсирует уход с орбиты на траекторию падения. Как только он начинает падать, Карее регистрирует время прихода лазерного сигнала. По прошествии 10 секунд декодированный лазерный сигнал сообщает, что все системы работают хорошо и что робот уже пролетел расстояние 2630 километров. По цвету лазерного света Карее вычисляет, что теперь он падает со скоростью 530 километров в секунду. Когда часы отсчитали 20 секунд, скорость удвоилась до 1060 километров в секунду, а пройденное расстояние учетверилось до 10500 километров. Часы продолжают идти. По истечении 60 секунд скорость возросла до 9700 километров в секунду, а расстояние до 135000 километров, что составляет пять шестых расстояния до горизонта.


Еще от автора Кип Торн
Интерстеллар: наука за кадром

Кип Торн, ученый с мировым именем и консультант известной кинокартины Кристофера Нолана «Интерстеллар», в своей книге, глубоко погружаясь в научный мир, подробно объясняет все те невероятные факты о гравитации, черных дырах, пятом измерении и других явлениях, которые визуально воплощены в этом фильме.Эта книга для всех, кому интересны физика, космос, естественные науки и то, как устроена наша Вселенная. А также для тех, у кого остались вопросы после просмотра фильма «Интерстеллар».


Рекомендуем почитать
Серебристые облака и их наблюдение

В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.


Астронавт. Необычайное путешествие в поисках тайн Вселенной

В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».


Сказка о небесных механиках, заставивших небесных гигантов играть в футбол

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сказка об астрономе Слайфере

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.