Борис Львович Розинг - основоположник электронного телевидения - [11]

Шрифт
Интервал

Важное значение для последующего практического применения фотоэффекта, в частности в телевидении, имел установленный А. Г. Столетовым факт безынерционности преобразования световой энергии в электрическую при внешнем фотоэффекте. А. Г. Столетов показал, что при изменении светового потока фототок изменяется практически мгновенно. Проводя опыты по исследованию влияния света на электрические разряды в газах, А. Г. Столетов создал прибор, явившийся прообразом современного фотоэлемента с внешним фотоэффектом.

Результаты исследований фотоэффекта он изложил в статьях "Актиноэлектрические исследования" и "Об актиноелектричеоких токах в разреженных газах" [>2 А. Г. С т о л е т.о в. Собрание сочинений, т. 1. Гостехтеоретиздат, 1939.]. Его классические работы легли в основу практического применения внешнего фотоэффекта и создания фотоэлектрических приборов, имевших важное значение для развития телевидения. Так, в 1889—1890 гг. немецкие инженеры Ю. Ольстер и X. Гайтель обнаружили, что некоторые щелочные металлы с малым атомным весом, например калий, рубидий и цезий, проявляют фотоэлектрическую активность при освещении их обыкновенным светом. Позднее, поместив щелочную амальгаму в эвакуированный стеклянный баллон, они создали первый щелочной фотоэлемент с внешним фотоэффектом. 

Дальнейшие теоретические исследования внешнего фотоэффекта сопровождались усовершенствованием приборов, действие которых основано на использовании этого явления. К 1907 г. были разработаны способы изготовления фотоэлементов с внешним фотоэффектом.

Изобретение электроннолучевой трубки имело не менее важное значение для развития телевидения, чем открытие внешнего фотоэффекта. Именно электроннолучевая трубка стала впоследствии тем звеном телевизионной системы, которое вызвало коренной поворот в направлении развития телевидения.

Изобретению электроннолучевой трубки предшествовали исследования электрического разряда в разреженных газах, которые привели к отрытию катодных лучей (1858 г.). Последующее изучение физических свойств этих лучей показало, что они представляют собой поток электронов, вылетающих с поверхности катода.

Прототипом электроннолучевой трубки можно считать газоразрядную трубку известного английского физика У. Крукса, впервые наблюдавшего изображение объекта в катодных лучах (теневое изображение креста на торцевой стенке трубки). Он также обнаружил фосфоресценцию некоторых кристаллов под действием катодных лучей.

Первую попытку применить катодные лучи для измерительных целей сделал в 1894 г. А. Хесс во Франции. Он разработал устройство для регистрации изменений магнитных полей, в котором пучок катодных лучей (электронный пучок) воздействовал на фотографическую пластинку, помещенную на его пути. Исследуемое магнитное поле отклоняло пучок в одном направлении на величину, пропорциональную напряженности поля. Для развертки исследуемого явления во времени необходимо было перемещать пластинку в камере. Устройство Хесса не получило распространения, очевидно из-за трудностей поддержания вакуума в трубке и камере с фотопластинкой.

В 1897 г. немецкий физик, профессор Страсбургского университета Карл Ф. Браун, использовав имевшиеся данные о свойствах катодных лучей, сконструировал первую катодную, или электроннолучевую, трубку, которую он предполагал использовать в качестве индикаторного прибора при исследовании электромагнитных колебаний. Особенностью трубки Брауна является применение флуоресцирующего экрана для наблюдения следа движения электронного пучка при отклонении его магнитным полем катушки.

Трубка Брауна представляла собой стеклянную запаянную колбу, откачанную до большого разрежения (10">2—10">5 мм рт. ст.). В колбе по ее оси расположены: холодный катод, анод, алюминиевая диафрагма с отверстием и экран в виде слюдяной пластинки, покрытой фос- <\ оресцирующим составом. К электродам трубки прикладывалось высокое напряжение (более 10 000 в). Выбиваемые из катода положительными ионами газа электроны ускорялись полем анода и летели с большой скоростью к экрану. Сквозь отверстие диафрагмы проходила только часть общего потока электронов в виде тонкого пучка. Электронный пучок отклонялся по горизонтали электромагнитом, расположенным снаружи трубки между диафрагмой и экраном. Флуоресцирующий экран превращал энергию электронного пучка в видимое изображение, которое можно было наблюдать через переднюю стенку колбы. Для развертки изображения во времени применялось вращающееся зеркало.

Трубку Брауна вскоре стали применять для демонстрационных и измерительных целей и лабораторных исследований быстропротекающих электрических явлений. В конструкцию ее вносились существенные изменения , и усовершенствования. В 1897 г. Дж. Томсон в опытах по определению отношения заряда электрона к его массе применял электроннолучевую трубку с расположенной внутри нее парой пластин для отклонения электронного пучка электростатическим полем. В 1899 г. немецкий ученый Э. Вихерт обнаружил возможность фокусировки электронного пучка в трубке короткой (по сравнению с длиной пучка) магнитной катушкой, ось которой совпадает с осью трубки. В 1902 г. преподаватель электротехники в |Кронштадтском минном офицерском классе А. А. Петровский применил для отклонения электронного пучка трубки не одну, а две отклоняющие катушки, расположенные взаимно-перпендикулярно в одной плоскости. Это вделало ненужным употребление вращающегося зеркала для развертки изображения.


Рекомендуем почитать
Невилл Чемберлен

Фамилия Чемберлен известна у нас почти всем благодаря популярному в 1920-е годы флешмобу «Наш ответ Чемберлену!», ставшему поговоркой (кому и за что требовался ответ, читатель узнает по ходу повествования). В книге речь идет о младшем из знаменитой династии Чемберленов — Невилле (1869–1940), которому удалось взойти на вершину власти Британской империи — стать премьер-министром. Именно этот Чемберлен, получивший прозвище «Джентльмен с зонтиком», трижды летал к Гитлеру в сентябре 1938 года и по сути убедил его подписать Мюнхенское соглашение, полагая при этом, что гарантирует «мир для нашего поколения».


Победоносцев. Русский Торквемада

Константин Петрович Победоносцев — один из самых влиятельных чиновников в российской истории. Наставник двух царей и автор многих высочайших манифестов четверть века определял церковную политику и преследовал инаковерие, авторитетно высказывался о методах воспитания и способах ведения войны, давал рекомендации по поддержанию курса рубля и композиции художественных произведений. Занимая высокие посты, он ненавидел бюрократическую систему. Победоносцев имел мрачную репутацию душителя свободы, при этом к нему шел поток обращений не только единомышленников, но и оппонентов, убежденных в его бескорыстности и беспристрастии.


Великие заговоры

Заговоры против императоров, тиранов, правителей государств — это одна из самых драматических и кровавых страниц мировой истории. Итальянский писатель Антонио Грациози сделал уникальную попытку собрать воедино самые известные и поражающие своей жестокостью и вероломностью заговоры. Кто прав, а кто виноват в этих смертоносных поединках, на чьей стороне суд истории: жертвы или убийцы? Вот вопросы, на которые пытается дать ответ автор. Книга, словно богатое ожерелье, щедро усыпана массой исторических фактов, наблюдений, событий. Нет сомнений, что она доставит огромное удовольствие всем любителям истории, невероятных приключений и просто острых ощущений.


Фаворские. Жизнь семьи университетского профессора. 1890-1953. Воспоминания

Мемуары известного ученого, преподавателя Ленинградского университета, профессора, доктора химических наук Татьяны Алексеевны Фаворской (1890–1986) — живая летопись замечательной русской семьи, в которой отразились разные эпохи российской истории с конца XIX до середины XX века. Судьба семейства Фаворских неразрывно связана с историей Санкт-Петербургского университета. Центральной фигурой повествования является отец Т. А. Фаворской — знаменитый химик, академик, профессор Петербургского (Петроградского, Ленинградского) университета Алексей Евграфович Фаворский (1860–1945), вошедший в пантеон выдающихся русских ученых-химиков.


Южноуральцы в боях и труде

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Кто Вы, «Железный Феликс»?

Оценки личности и деятельности Феликса Дзержинского до сих пор вызывают много споров: от «рыцаря революции», «солдата великих боёв», «борца за народное дело» до «апостола террора», «кровожадного льва революции», «палача и душителя свободы». Он был одним из ярких представителей плеяды пламенных революционеров, «ленинской гвардии» — жесткий, принципиальный, бес— компромиссный и беспощадный к врагам социалистической революции. Как случилось, что Дзержинский, занимавший ключевые посты в правительстве Советской России, не имел даже аттестата об образовании? Как относился Железный Феликс к женщинам? Почему ревнитель революционной законности в дни «красного террора» единолично решал судьбы многих людей без суда и следствия, не испытывая при этом ни жалости, ни снисхождения к политическим противникам? Какова истинная причина скоропостижной кончины Феликса Дзержинского? Ответы на эти и многие другие вопросы читатель найдет в книге.