Битва при черной дыре - [77]
Конечно, наука — это человеческое предприятие, и в ходе мучительной борьбы за новые парадигмы мнения и эмоции могут быть столь же изменчивыми, как и в любом другом занятии. Но каким-то образом, когда все радикальные мнения отфильтрованы научным методом, остаются небольшие зерна истины. Они могут совершенствоваться, но, как правило, отката назад уже не бывает.
Я чувствовал, что Битва при черной дыре была классической борьбой за новую парадигму. Тот факт, что дополнительность черных дыр победила в опросе, не был доказательством какой-то реальной победы. Ведь те люди, на которых я больше всего хотел повлиять, — Джо Полчински, Гэри Хоровиц, Энди Строминджер и, самое главное, Стивен — проголосовали на стороне оппозиции.
В течение следующих недель мы с Ларусом Торласиусом совместно придумали и сформулировали ответ на вопрос Джона Прескилла Это заняло у нас некоторое время, но я уверен, что, если бы мой разговор с Прескиллом и Пейджем продлился еще полчаса, мы решили бы эту проблему еще тогда. Я считаю, что Джон фактически сам дал половину ответа Просто учтите, что биту информации требуется некоторое время на то, чтобы быть излученным из черной дыры. Джон предположил, что к тому времени, когда внешний наблюдатель восстановит этот бит и прыгнет в черную дыру, исходный бит уже давно будет в сингулярности. Единственный вопрос, который оставался: сколько времени понадобится, чтобы восстановить бит по испаряющемуся хокинговскому излучению.
Забавно, что ответ уже был дан в выдающейся статье, которая вышла за месяц до конференции в Санта-Барбаре. Из статьи вытекало, хотя это и не говорилось явно, что для восстановления одного бита информации нужно подождать, пока будет излучена половина хокинговских фотонов. При известном очень низком темпе испускания фотонов черными дырами на это понадобилось бы в случае Черной дыры звездной массы около 10>68 лет — время, неизмеримо большее возраста Вселенной. Но достаточно лишь доли секунды Аля того, чтобы исходный бит был уничтожен в сингулярности. Очевидно, что нет никакой возможности извлечь бит из хокинговcкого излучения, затем прыгнуть с ним в черную дыру и там сравнить его с первым битом. Дополнительность черных дыр была спасена. Кто был автором блестящей статьи? Дон Пейдж.
16
Постойте! Верните старую прошивку
Однажды в 1960-х годах я пошел на спектакль небольшого авангардного театра в Гринвич-Виллидж. Важным элементом представления — грубоватым юмором, как оказалось, — было то, что публику между актами вовлекали в работу по замене декораций вместо технического персонала.
Одной женщине предложили передвинуть кресло в глубь сцены, но только она к нему притронулась, оно превратилось в груду щепок. Кто-то схватил за ручку чемодан, но тот не сдвинулся с места. Мне поручили поднять и подать кому-то на невысоком балконе двухметровый валун. Ради сохранения общего настроения я обхватил его руками и сделал вид, что поднимаю на пределе своих сил. Мгновение настоящего когнитивного диссонанса наступило, когда камень легко взлетел в воздух, как будто он почти ничего не весил. Это была пустая оболочка из окрашенной бальзы.
Заложенная в наших головах связь между размером объекта и его весом должна быть одним из жестко прошитых инстинктов — частью нашего автоматического чувства физики. Соответственно, неправильная его работа должна бы означать серьезное повреждение мозга — если только человек не является квантовым физиком.
Одна из величайших работ по перепрошивке наших понятий, последовавшая за эйнштейновскими открытиями 1905 года, требовала отказа от инстинкта «большое — тяжелое, маленькое — легкое» и замены его прямо противоположным: «большое — легкое, маленькое — тяжелое». Как и во многих других случаях, Эйнштейн первым заподозрил эту зазеркальную инверсию логики. Что он тогда курил? Скорее всего, только свою трубку. Как всегда, далеко идущие выводы Эйнштейна вытекали из простейшего воображаемого эксперимента, который он поставил у себя в голове.
Данный мысленный эксперимент начинается с регулируемой коробки — пустой, за исключением нескольких фотонов, — которую можно по желанию делать больше или меньше. Ее внутренние стенки сделаны из идеально отражающих зеркал, так что фотоны, пойманные в коробку, носятся вперед-назад между зеркальными поверхностями и не могут выйти наружу.
Волна, заключенная в замкнутой области пространства, не может иметь длину больше размеров этой области. Попробуйте изобразить десятиметровую волну внутри метровой коробки.
Получается бессмыслица. Однако сантиметровая волна легко поместится в коробку.
Эйнштейн представил, что коробка делается все меньше и меньше, а фотоны при этом остаются внутри нее. При сжатии коробки фотоны не могут сохраняться неизменными. Единственная возможность состоит в том, что длина волны каждого фотона должна сокращаться вместе с коробкой. В конце концов окажется, что микроскопическая коробка заполнена очень высокоэнергичными фотонами — высокая энергия соответствует их очень малой длине волны. Дальнейшее сжатие коробки еще более повысит их энергию.
Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.