Битва при черной дыре - [51]

Шрифт
Интервал

Возможно, я допускаю ту же эгоцентричную ошибку, говоря, что Битва при черной дыре завязалась в 1983 году, в мансарде у Вернера Эрхарада. Атака Стивена на самом деле началась в 1976 году, однако не бывает сражения без противника. Его нападение было в основном проигнорировано, хотя это и была прямая атака на один из самых надежных принципов физики — закон, утверждающий, что информация никогда не исчезает, или, в краткой форме, закон сохранения информации. Ввиду его исключительной важности для всего дальнейшего изложения давайте рассмотрим закон сохранения информации еще раз.

Информация навсегда

Что означает уничтожение в применении к информации? В классической физике ответ прост: информация уничтожается, если в будущем теряются следы прошлого. Как ни удивительно, это может происходить даже в случае детерминистических законов. Чтобы показать это, давайте вернемся к трехсторонней монете, с которой мы играли в главе 4. Три стороны монеты обозначались Р, О и Б (решка, орел и боковая сторона). В той главе два детерминистических закона я описал следующими диаграммами:

Оба закона обладают свойством детерминистичности, так что, каково бы ни было состояние монеты, можно с полной уверенностью указать ее следующее и предыдущее состояния. Сравним это с законом который описывается следующей диаграммой:

или формулой

Р=О О=Р Б=О

В словесной формулировке: если в один момент монета лежит решкой, то в следующее мгновение она ляжет орлом. Если она лежит орлом, то ляжет решкой. Если же она лежит на боку, то в следующий момент ляжет орлом. Данное правило совершенно детерминистично: с чего бы вы ни начали, будущее предопределено этим законом. Допустим, к примеру, начальное состояние было Б. Дальнейшая История полностью предопределена: БОРОРОРОР О… Если мы начнем с Р, то история будет: РОРОРОРОРОР О… Если же в начале будет О, то мы получим историю: ОРОРОРОРОР О…

С этим законом что-то не так, но что именно? Как и другие детерминистические законы, он полностью предопределяет будущее.

Но если попытаться определить прошлое, ничего не получится. Допустим, мы обнаружили монету в состоянии Р. Можно быть уверенными, что предыдущим состоянием было О. Пока все хорошо. Но попробуем сделать еще один шаг в прошлое. Имеются два состояния, которые ведут к О, а именно Р и Б. Это создает проблему: получили мы О из Р или из Б? Узнать это невозможно. Вот это я и называю потерей информации, но в классической физике такого никогда не случается. Математические правила, на которых строятся законы Ньютона и максвелловская теория электромагнетизма, не оставляют сомнений: за каждым состоянием следует единственное состояние, и предшествует ему также единственное.

Другой путь, на котором может теряться информация, связан с наличием в законе доли неопределенности. В этом случае нельзя быть полностью уверенным ни в будущем, ни в прошлом.

Как я уже объяснял, квантовая механика включает элемент случайности, но в более глубоком смысле информация в ней никогда не теряется. Я проиллюстрировал это на примере с фотоном в главе 4, давайте сделаем это снова, на этот раз на примере электрона, сталкивающегося с неподвижной мишенью вроде тяжелого ядра. Электрон подлетает слева, двигаясь в горизонтальном направлении.

Он сталкивается с ядром и рассеивается в некотором непредсказуемом новом направлении. Хороший квантовый теоретик рассчитает вероятность того, что электрон отскочит, например, в перпендикулярном направлении, но не сможет надежно это направление предсказать.

Есть два способа проверить, сохраняется ли информация о начальном движении. Оба они включают запуск электрона назад под управлением обращенных вспять законов.

В первом случае наблюдатель проверяет, где находится электрон непосредственно перед обращением закона. Это можно сделать разными способами, в большинстве из которых в качестве зондов служат фотоны. Во втором случае наблюдатель не беспокоится о проверке; он просто реверсирует закон, никак не вмешиваясь в поведение электрона. Результаты этих двух экспериментов разделаются радикально. В первом случае электрон, двинувшись назад, оказывается в итоге в случайном месте и двигается в непредсказуемом направлении. Во втором случае, когда проверка не выполнялась, электрон в конце возвратной последовательности всегда оказывается движущимся назад в горизонтальном направлении. Когда наблюдатель в первый раз после начала эксперимента посмотрит на электрон, он обнаружит, что тот движется точно так же, как в начале, только в обратную сторону. Похоже, что информация теряется лишь тогда, когда мы активно взаимодействуем с электроном. В квантовой механике до тех пор, пока мы не взаимодействуем с системой, информация, которую она несет, остается столь же нерушимой, как и в классической физике.

Атака Стивена

Нелегко найти две более мрачные физиономии, чем были у меня и Герарда 'т Хоофта в тот день в Сан-Франциско в 1983 году. Высоко над Франклин-стрит в мансарде Вернера Эрхарда была объявлена война и совершено открытое нападение на наши самые глубокие убеждения. Стивен Наглец, Стивен Храбрец, Стивен Разрушитель располагал всем тяжелым вооружением, а его ангельская/демоническая улыбка показывала, что он об этом знает.


Еще от автора Леонард Сасскинд
Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной

Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд.


Рекомендуем почитать
Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Родники здоровья

В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Удивительная астрономия

Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.