Битва при черной дыре - [43]
В этом случае видно, что высокая энтропия часто сопутствует однородному, «лысому» виду.
Связь внешней однородности и высокой энтропии указывает на нечто важное. Она подразумевает, что система, какой бы она ни была, должна состоять из большого числа микроскопических объектов, которые (а) слишком малы, чтобы их увидеть, и (б) могут комбинироваться множеством разных способов без изменения общего вида системы.
Мысль Бекенштейна о том, что черные дыры обладают энтропией, то есть, иными словами, несмотря на свою безволосость, содержат скрытую информацию, оказалась одним из тех простых, но глубоких суждений, которые одним махом меняют ситуацию в физике. Когда я начинал писать книги для широкой публики, мне настоятельно советовали ограничиться одной-единственной формулой: E = mc>2. Мне говорили, что с каждым дополнительным уравнением продажи книги будут падать на десять тысяч экземпляров. Если честно, это противоречит моему опыту. Так что после долгих колебаний я решил пойти на риск. Доказательство Бекенштейна столь необычайно простое и красивое, что отказ от него обесценил бы эту книгу. Тем не менее я приложил усилия и разъяснил результаты так, чтобы менее склонные к математике читатели могли спокойно пропустить несколько простых формул, не теряя понимания сути.
Бекенштейн не ставил впрямую вопрос о том, сколько битов можно скрыть внутри черной дыры данного размера. Вместо этого он задался вопросом о том, как изменится размер черной дыры, если сбросить в нее один бит информации. Это похоже на вопрос о том, насколько поднимется уровень воды в ванне, если добавить в нее одну каплю воды. Точнее даже: насколько он поднимется при добавлении одного атома?
Сразу возник другой вопрос: а как добавить один бит? Может быть, для этого Бекенштейну надо бросить в черную дыру одну точку, напечатанную на клочке бумаги? Очевидно, нет; точка состоит из огромного числа атомов, и то же самое относится к бумаге. Поэтому в точке содержится куда больше одного бита информации. Лучший подход — это вбросить одну элементарную частицу.
Предположим, например, что в черную дыру падает одиночный фотон. Даже один фотон может нести более одного бита информации. В частности, масса информации содержится в координатах точки, где фотон пересекает горизонт. Здесь Бекенштейн ловко применил гейзенберговскую концепцию неопределенности. Он посчитал, что положение фотона должно быть максимально неопределенным, лишь бы только он попадал в черную дыру. Такой «неопределенный фотон» несет лишь один бит информации, а именно находится ли он где-то внутри черной дыры.
Если помните, в главе 4 говорилось о том, что разрешающая способность светового луча не превышает длины его волны. В данном случае Бекенштейн не собирался рассматривать детали на горизонте; наоборот, горизонт должен был выглядеть максимально размытым. Хитрость была в том, чтобы использовать такой длинноволновый фотон, чтобы он распределился по всему горизонту. Иными словами, если горизонт имеет шварцшильдовский радиус то фотон должен иметь такую же длину волны. Кажется, что можно использовать и более длинные волны, но такие фотоны будут отскакивать от черной дыры, а не захватываться ею.
Бекенштейн подозревал, что добавление лишнего бита к черной дыре вызовет прирост ее размера, пусть и очень небольшой, подобно тому как добавление лишней молекулы резины к воздушному шарику ненамного его увеличит. Однако для вычисления этого прироста требуется несколько промежуточных шагов. Давайте сначала бегло с ними ознакомимся.
1. Первым делом надо узнать, насколько увеличится энергия черной дыры при добавлении одного бита информации.
2. Далее нужно определить, насколько изменится масса черной дыры с добавлением лишнего бита. Для этого вспомним знаменитую формулу Эйнштейна:
E = mc>2
Однако нам понадобится обратить ее, что позволит узнать изменение массы по величине добавленной энергии.
3. Когда масса определена, можно вычислить изменение шварцшильдовского радиуса, используя ту же формулу, которую вывели Митчел, Лаплас и Шварцшильд (см. главу 2):
R>s = 2MG/c>2
4. Наконец, надо определить прирост площади горизонта. Для этого нужна формула площади сферы:
Площадь горизонта = 4πR>s>2.
Начнем с энергии однобитного фотона. Как я уже объяснял, фотон должен иметь достаточно большую длину волны, чтобы его положение внутри черной дыры было неопределенным. Это значит, что длина волны должна быть R>s. Согласно Эйнштейну, фотон с длиной волны R>s имеет энергию E, определяемую следующей формулой:[72]
Е = hc/R>s.
В этой формуле h — постоянная Планка, а с — скорость света. Из нее следует, что сбрасывание в черную дыру одного бита информации добавляет ей энергию величиной hc/R>s.
Следующий шаг — это расчет изменения массы черной дыры. Для пересчета энергии в массу ее надо разделить на с>2, а значит, масса черной дыры возрастет на величину h/R>sc:
Изменение массы = h/R>sc.
Подставим в эту формулу числа, чтобы увидеть, сколько же добавит один бит к массе черной дыры, имеющей массу Солнца.
Постоянная Планка, h = 6,6x10>-34
Шварцшильдовский радиус черной дыры, R
Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.