Битва при черной дыре - [24]
Существует другой, очень тонкий физический закон, который, возможно, даже более фундаментален, чем закон сохранения энергии. Его иногда называют обратимостью, но давайте будем называть его законом сохранения информации. Сохранение информации подразумевает, что если вы с идеальной точностью знаете настоящее, вы можете предсказать будущее на все времена. Но это лишь половина дела. Закон также утверждает, что если вы знаете настоящее, то вы можете быть абсолютно уверены в прошлом. То есть он работает в обоих направлениях.
В мире орлов и решек одной монеты полностью детерминистический закон гарантирует идеальное сохранение информации. Например, при законе
P → O O → P
как прошлое, так и будущее можно предсказать идеально точно. Но даже малейшая доля случайности разрушает эту идеальную предсказуемость.
Давайте рассмотрим другой пример, на этот раз с воображаемой трехсторонней монетой (игральная кость — это шестисторонняя монета). Назовем три стороны орлом, решкой и ребром или О, Р и Б. Вот идеально детерминистический закон:
P → O O → Б Б → P
Чтобы визуализировать его, полезно нарисовать диаграмму.
С таким законом история мира, начинающаяся с Р, будет выглядеть так:
РОБРОБРОБРОБРОБРОБРОБРОБ…
Существует ли способ экспериментально проверить закон сохранения информации? Фактически есть множество способов, одни из них реализуемы, другие нет. Если вы способны контролировать закон и менять его по своему желанию, выполнить проверку будет очень просто. Вот как это сделать в случае трехсторонней монеты. Начнем с одного из трех ее состояний, и пусть определенное время все идет своим чередом. Допустим, каждую наносекунду состояние меняется с Р на О, затем на Б и далее в цикле по всем трем возможностям. В конце отмеренного интервала времени изменим закон. Новый закон будет таким же, как прежний, но с обратным порядком обхода — не по часовой стрелке, а против.
Теперь дадим системе поработать на обратном ходу ровно столько же времени, сколько она работала на прямом. Первоначальная история повернется вспять, и монета вернется в исходную точку. Не важно, сколько времени вы ждали, детерминистический закон обладает идеальной памятью и всегда возвращает к начальным условиям. Чтобы проверить закон сохранения информации, вам даже не надо знать точный вид этого закона, главное, чтобы он был обратимым. Данный эксперимент удается всегда, если только закон детерминистичен. Но он окончится неудачей, если имеет место какая-либо случайность (если только эта случайность не совсем уж ничтожная).
Вернемся к Эйнштейну, Бору, Богу (воспринимайте его как законы физики) и квантовой механике. Еще один знаменитый афоризм Эйнштейна гласит: «Господь изощрен, но не злонамерен». Я не знаю, что заставило Эйнштейна думать, что законы физики не злонамеренны. Лично я порой нахожу, что закон тяготения — весьма злая штука. Но Эйнштейн был прав относительно изощренности. Законы квантовой механики крайне изощренны — настолько изощренны, что они позволяют случайности сосуществовать как с законом сохранения энергии, так и с сохранением информации.
Рассмотрим частицу. Подойдет любая, но лучше выбрать фотон. Он порождается источником света, лазером например, и направляется к непрозрачному листу металла с крошечным отверстием в нем. За отверстием находится люминесцентный экран, который вспыхивает, когда на него попадает фотон.
Через некоторое время фотон может пройти через отверстие или промахнуться и отразиться от препятствия. В первом случае он попадает на экран, но не обязательно напротив отверстия. Вместо сохранения прямолинейного движения фотон может, проходя через отверстие, приобрести случайный импульс. Так что окончательное положение вспышки непредсказуемо.
Теперь удалим люминесцентный экран и повторим эксперимент. Через короткое время фотон либо попадет в металлический лист и отразится, либо пройдет через отверстие, испытав случайный толчок. Не имея ничего для детектирования фотона, невозможно сказать, где находится фотон и в каком направлении он движется.
Но представим, что мы вмешались и обратили закон движения фотона[47]. Чего ждать от такого реверсированного фотона спустя тот же отрезок времени? Естественно ожидать, что случайность (при развороте случайность остается случайностью) похоронит всякую надежду на то, что фотон вернется в исходную точку. Случайность второй половины нашего эксперимента должна наложиться на случайность первой половины и сделать движение фотона еще более непредсказуемым.
Однако ответ куда изощреннее. Прежде чем я объясню, в чем дело, давайте ненадолго вернемся к эксперименту с трехсторонней монетой. 1 км мы тоже сначала запускали закон в одном направлении, а потом обращали его. В том эксперименте была одна деталь, которую я опустил: смотрел ли кто-нибудь на монету непосредственно перед тем, как обратить закон. Но что может измениться, если кто-то подсматривал? Ничего не изменится, если только взгляд на монету не меняет ее состояния. Кажется, это не слишком жесткое условие; хотел бы я посмотреть на монету, которая подлетает в воздух и переворачивается только потому, что кто-то на нее посмотрел. Но в изысканном мире квантовой механики нельзя взглянуть на кого-то, не побеспокоив.
Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.