Битва при черной дыре - [100]
Наша Вселенная — это мир не только пространства, времени и частиц, но также и сил. Электрические силы, действующие между заряженными частицами, могут перемещать кусочки бумаги и пылинки (скажем, за счет статического электричества), но более важно, что эти силы удерживают электроны на их орбитах вокруг атомных ядер. Гравитационные силы, действующие между Землей и Солнцем, удерживают на орбите Землю.
Все силы в конечном счете связаны с микроскопическими силами, действующими между отдельными частицами. Но откуда берутся эти межчастичные силы? Для Ньютона универсальная силапритяжения, действующая между массами, была просто физическим фактом — в действительности он смог ее только описать, но не объяснить. Однако в течение девятнадцатого и двадцатого столетий такие физики, как Майкл Фарадей, Джеймс Клерк Максвелл, Альберт Эйнштейн и Ричард Фейнман, сделали блестящие открытия, объяснявшие силы через стоящие за ними более фундаментальные концепции.
Согласно Фарадею и Максвеллу, электрические заряды притягиваются и отталкиваются не непосредственно; в пространстве между зарядами существует посредник, передающий взаимодействие. Представьте себе «Слинки» — эту ленивую игрушечную пружинку, — натянутую между двумя разнесенными на некоторое расстояние шарами.
Каждый из шаров подвергается воздействию силы только со стороны присоединенного к нему конца «Слинки». Затем каждый фрагмент «Слинки» воздействует на своих соседей. Сила передается по «Слинки», пока не передаст натяжение к объекту на другом конце. Может казаться, что два объекта притягиваются друг к другу, но это иллюзия, созданная посредничающей между ними «Слинки».
Когда доходит до электрически заряженных частиц, посредничающие агенты — это заполняющие пространство между ними электрическое и магнитное поля. Хотя они невидимы, эти поля совершенно реальны: это непрерывные невидимые возмущения пространства, которые переносят взаимодействия между зарядами.
Эйнштейн в своей теории гравитации пошел еще глубже. Массы искривляют геометрию пространства-времени в своей окрестности и благодаря этому искажают траектории других масс. Искажения геометрии тоже можно рассматривать как поля.
Электрическое поле положительного заряда
Магнитное поле стержневого магнита
Могло показаться, что на этом все кончится. Так и было, пока не появился Ричард Фейнман с квантовой теорией сил, которая на первый взгляд была совершенно не похожа на теории поля Фарадея — Максвелла и Эйнштейна. Его теория начинается с представления о том, что электрически заряженные частицы могут испускать (бросать) и поглощать (ловить) фотоны. В этой идее еще не было ничего странного; давно уже было понято, что электроны испускают рентгеновские лучи, когда внезапно останавливаются у препятствия в рентгеновской трубке. Обратный процесс поглощения был описан Эйнштейном в его статье, где он впервые ввел идею световых квантов.
Фейнман изображал заряженные частицы в виде жонглеров фотонами, постоянно испускающими и поглощающими их и создающими в пространстве, окружающем заряд, огромное число фотонов. Отдельный покоящийся электрон — это идеальный жонглер, никогда не теряющий то, что подбросил. Но, как и в случае с жонглером-человеком в железнодорожном вагоне, неожиданное ускорение может все нарушить. Заряд может сместиться со своей позиции, из-за чего окажется не в том месте, чтобы поглотить фотон. Этот упущенный фотон улетает прочь и становится частью излучаемого света.
Вернемся в железнодорожный вагон, где в поезд вместе с жонглером садится его партнер, и они вдвоем решают попрактиковаться в командной жонглерской работе. В основном каждый жонглер ловит свои собственные броски, но при сближении время от времени каждый из них может ловить шары, брошенные другим. То же самое происходит, когда сближаются два электрических заряда. Окружающие их облака фотонов смешиваются, и один заряд может поглощать фотоны, испущенные другим. Этот процесс называется обменом фотонами.
В результате обмена фотонами возникают силы, с которыми заряды действуют друг на друга. На сложный вопрос о том, будет ли сила притягивающей или отталкивающей, можно ответить лишь с учетом всех тонкостей квантовой механики. Достаточно сказать, что, когда Фейнман выполнял свои вычисления, он обнаружил то же, что Фарадей и Максвелл: одинаковые заряды отталкиваются, а противоположные — притягиваются.
Интересно сравнить жонглерские навыки электронов и жонглеров-людей. Человек, по-видимому, может бросать и ловить предметы несколько раз в секунду, однако электрон испускает и поглощает фотоны примерно 10>19 раз в секунду.
По теории Фейнмана, жонглерами являются все материальные частицы, а не только электрические заряды. Любая форма материи испускает и поглощает гравитоны — кванты гравитационного поля. Земля и Солнце окружены облаками гравитонов, которые перемешиваются и участвуют в обмене. А в результате гравитационная сила удерживает Землю на орбите.
Сколь же часто отдельный электрон испускает гравитон? Ответ довольно неожиданный: совсем нечасто. В среднем время, необходимое электрону, чтобы испустить гравитон, превышает весь возраст Вселенной. Вот почему, по фейнмановской теории, гравитационное взаимодействие между элементарными частицами настолько слабее электрического.
Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.