Бирюльки и фитюльки всемирного тяготения - [7]
Напомним: она понадобилась, чтобы избежать оглушительного вывода о том, что неоднородности в распределении масс не оказывают воздействия на гравиметрические приборы. Если вышеизложенные факты из практики так и не убедили кого-то в том, что гипотеза об изостазии – это нелепость, то приведём ещё простенькое теоретическое соображение. Если в некотором регионе действительно имела бы место изостазия, обнуляющая влияние неоднородностей масс при измерениях силы тяжести, то тогда в этом регионе не имела бы место изостазия, обнуляющая влияние неоднородностей масс при наблюдениях уклонений отвеса. И наоборот. Дело в том, что никакое распределение заглублённых масс не могло бы скомпенсировать сразу и вертикальные, и горизонтальные силовые возмущения от поверхностных неоднородностей. Но ведь «изостатический эффект» повсеместно наблюдается и с помощью гравиметров, и с помощью отвесов! Значит, дело здесь вовсе не в компенсирующих распределениях масс. Следует либо придумать, вместо гипотезы об изостазии, другую спасительную гипотезу – поприличнее – либо признать-таки, что неоднородности в распределении масс не влияют на показания гравиметрических приборов.
Но что означало бы такое признание? Да то и означало бы, что тяготение порождается не веществом, не массами. Что вещество Земли, которое мы попираем своими стопами, собственного тяготения не имеет. Что нам только кажется, будто это самое вещество притягивает – пока оно входит в состав планеты Земля. Которая потому и является планетой, что удерживается в центре планетарной сферы тяготения. Которая и обеспечивает «притяженье Земли».
Причём, едва ли Земля находится на особом положении, когда не имеет собственного тяготения лишь вещество, входящее в её состав – а вещество в остальном космосе собственное тяготение очень даже имеет. Тяготение – как известно, свойство универсальное, и если на Земле оно порождается не веществом, то и в остальном космосе – тоже. А вещество – оно везде вещество. Поэтому вполне допустимы космические тела, не имеющие собственного тяготения. В смысле – не имеющие его вообще совсем. С чего тебе его иметь, если ты не звезда и не планета? Если ты всего-то – спутник планеты, да не Луна и не Титан? Говорите, оно по закону всемирного тяготения всем положено? Ага, щас мы вам всем вынем да положим! Вы – Фобос, Ганимед, Янус, Оберон и прочие – держите карманы шире! А вы – Тефия, Диона, Миранда, Нереида и прочие – держите шире лифчики! Ишь!..
Так оно было или примерно так, но у шести десятков спутников планет Солнечной системы никаких признаков собственного тяготения не наблюдается! Ни атмосфер у них нет, ни собственных спутничков – по теории вероятностей это ай-яй-яй просто. Но учёные, несмотря ни на что, пребывают в несокрушимой уверенности в том, что собственное тяготение у спутников есть. Иногда на этой почве до смешного доходило. Вот у Юпитера есть четыре крупных спутника. «Ясно же, как пень, - прикидывали учёные, - что эти четыре спутника друг друга притягивают. Значит, каждые три из них влияют на движение четвёртого. Рассмотрим-ка движение этой четвёрочки и выцарапаем их массы, по принципу: у кого масса больше, тот влияет сильнее, а влияется слабее!» Казалось бы – просто. Но эта простенькая задачка доводила исследователей до умопомрачения. Конфуций предупреждал: «Трудно искать чёрную кошку в тёмной комнате – особенно если её там нет». Исследователи про это знали, но думали, что Конфуций предупреждал дурачков каких-нибудь – а мы-то, мол, не дурачки. И вот что у них, не-дурачков, получалось. Брали в обработку движение той четвёрки на некотором интервале времени, делали все мыслимые и немыслимые натяжки, и получали на соплях «наиболее вероятные» значения масс. А потом – впадали в прострацию. Потому что на другом интервале времени натяжки приходилось делать совсем другие, и новые «наиболее вероятные» значения масс не совпадали с ранее полученными. И на третьем интервале – с тем же успехом! И – так далее! Это у них даже называлось соответственно: динамические определения масс спутников. Надинамившись до посинения, решили так: чтобы труды тяжкие не совсем зазря пропали, надо выбрать тот интервал времени, на котором значения масс получились самые-самые вероятные из набора «наиболее вероятных». Вот их-то и выдали. И примечание сделали: «Не повторять! Опасно!»
Укрепивши, таким образом, свою веру в мощь предсказательной силы закона всемирного тяготения, дождались времечка, когда уровень техники позволил работать даже с такой космической мелюзгой, как астероиды. «Есть у астероидов собственное тяготение, или нет?» - такой глупый вопрос даже не возникал. Опять же, было ясно, как пень, что тяготение у них есть, и задача виделась только в том, чтобы это доказать. Теория гласит: два астероида, достаточно сблизившиеся и имеющие достаточно малую взаимную скорость, из-за притяжения друг к другу непременно должны начать обращение вокруг их общего центра масс. Вот и кинулись искать двойные астероиды и доказывать их обращение. Поначалу это делалось неуклюже, по косвенным признакам. Обнаружат астероид с периодическим блеском и заявят: это из-за того, что спутник его периодически затмевает. Да нет, говорят им, проще допустить, что астероид сам вращается и блестит то светлой, то тёмной гранями. Тогда отыщут астероид с двойной периодичностью кривой блеска: уж тут-то точно спутник затмевает! Да нет, говорят им, проще допустить, что фигура астероида асимметрична – например, имеет вырост – и что такой астероид испытывает два вращения сразу. Тогда предъявят данные радиоастрономии: смотрите, вот радио-изображение чудной парочки – допплеровские сдвиги говорят о её обращении! Да нет, говорят им, это вращается один астероид, с перемычкой: радио-изображения будут такие же. Короче, настоятельно потребовались более достоверные свидетельства обращения двойных астероидов – фотографические. И вот однажды…
Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.
Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".
Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков! Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.
В нашей науке достигнут максимум её независимости не только от общества, но и от здравого смысла. За наш счет ученые занимаются тем, чем сами хотят. Они сами отчитываются перед собой и присваивают друг другу оплачиваемые нами впоследствии звания. Они сейчас борются за эксклюзивное право исключительно самостоятельно определять, что есть наука, а что нет. Более того, они желают даже на государственном уровне запрещать другим людям заниматься (даже за собственный счет) тем, что тем интересно, но что противоречит текущим научным фантазиям (пардон, "фундаментальным теориям").Если в обычной жизни обнаруживается чья-то ошибка, её просто исправляют.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.