Биология в новом свете - [5]
Любая домашняя хозяйка по собственному опыту знает, что килограмм крупной картошки можно очистить быстрее, чем килограмм мелкой. Как известно из математики, поверхность шара увеличивается пропорционально квадрату его диаметра, а объем шара связан с диаметром кубической зависимостью, и потому в килограмме мелкой картошки кожуры больше, чем в килограмме крупной. Даже такой несложный геометрический пример показывает, что в расчетах не всегда можно исходить из простой пропорциональности. Инженерам это давно известно, и какой-нибудь сведущий в технике читатель уже на первом примере сморщил бы нос: "Телевизионную башню, тонкую как стебелек, я бы мог построить, но пусть она будет не выше травинки". Или: "Почему же в природе трава не вырастает до 200 м?" Последний вопрос заставляет о многом задуматься, и мы еще не раз к нему вернемся.
Каждый мальчуган, который когда-либо строил модель самолета, знает, что ее можно смастерить двумя способами. Можно построить уменьшенную копию настоящего большого самолета — серебристую птицу с двигателями, окошечками кабины и другими деталями. Однако подобная модель годится только для того, чтобы повесить ее над письменным столом, и, конечно, не следует ожидать, что она сможет летать. Если же мы хотим иметь летающую модель такого же размера, ее надо делать иначе, и в первую очередь следует изменить размеры и профиль крыла. В результате модель будет мало похожа на настоящий самолет.
За этим примером стоят серьезные проблемы техники и биологии.
Начнем с техники. Здесь на основе анализа сравнительно простых систем удалось выявить важные теоретические закономерности, которые использует и развивает сейчас биофизика.
Остановимся на авиации. Чтобы проверить расчеты конструкций и при необходимости исправить их, инженеры испытывают модели новых самолетов в аэродинамической трубе. При этом в большинстве случаев поневоле приходится обращаться к уменьшенным копиям, а для того чтобы результаты модельных испытаний можно было использовать на практике, ученые разработали теорию подобия.
Очень скоро выяснилось, что некоторые величины характеризуют различные движущиеся тела и позволяют сравнивать их между собой гораздо лучше, чем использованные нами ранее коэффициенты пропорциональности. Примером такой величины может служить так называемое число Рейнольдса (Re), которое играет огромную роль в авиации и судостроении; его рассчитывают по следующей формуле:
Форма потока, обтекающего шар, при различных числах Рейнольдса (Re). Поведение потока определяется не размерами тела, а только числом Рейнольдса, которое, правда, зависит от размеров
Кинематический коэффициент вязкости — это параметр, характеризующий "густоту" среды. Мы не будем подробно на нем останавливаться, а лишь отметим, что, если выразить скорость и длину в метрах и секундах, то кинематический коэффициент вязкости равен для воды 1,06⋅10>-6, а для воздуха — 14,9⋅10>-6.
Практический смысл числа Рейнольдса заключается в следующем: поведение потока жидкости или газа, обтекающего тело определенной формы при постоянном значении числа Рейнольдса, не зависит от размеров тела.
В качестве примера рассмотрим движущийся шар. Независимо от того, большой он или маленький, при числе Рейнольдса меньше 1000 воздух, вода или любая другая среда обтекают шар плавно, или, как говорят в гидродинамике, ламинарно. Как только число Рейнольдса превысит критическое значение (вследствие увеличения диаметра шара или скорости потока), сразу же появятся завихрения. Таким образом, если мы хотим определить аэродинамические свойства крыла самолета по поведению в аэродинамической трубе его уменьшенной модели, нам надо сначала определить число Рейнольдса для крыла самолета, исходя из реальных размеров и скорости последнего. Затем, зная размеры модели, следует установить такую скорость воздуха в трубе, при которой числа Рейнольдса для модели и настоящего самолета одинаковы.
Биологический объект в аэродинамической трубе. Такие устройства позволяют изучать поведение воздушного потока при обтекании летающих объектов
Специалисты по бионике рассчитали значения числа Рейнольдса для многих животных. Так, для ласточки — ее скорость полета 10 м/с и длина тела 0,01 м — мы получим
Re = (10 ⋅ 0,01) / (14,9 ⋅ 10>-6) = 6700
Подобное значение числа Рейнольдса столь мало, что оно вряд ли может заинтересовать авиаконструктора. Если мы подставим в приведенную выше формулу значения скорости и размеров современного самолета, то сразу поймем, почему интерес авиаконструктора вызывают лишь шести- или восьмизначные числа. Как видно из рисунка, такие значения числа Рейнольдса (1 000 000 и выше) характерны лишь для дельфинов — наиболее крупных и быстрых пловцов.
Итак, даже технические системы, гораздо менее сложные, чем системы в живой природе, бессмысленно сравнивать только на основании пропорций. Сравнение систем одинаковой формы, но отличающихся друг от друга размерами можно проводить, опираясь лишь на безразмерные величины, определяемые на основе различных параметров систем. На сегодняшний день известны и применяются около ста таких безразмерных величин.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.
Автор и составитель буклетов серии «Природу познавая, приумножай богатство родного края!»САМОЙЛОВ Василий Артемович – краевед, натуралист и фольклорист, директор Козельского районного Дома природы. Почетный член Всероссийского ордена Трудового Красного Знамени общества охраны природы.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В предлагаемой вниманию читателей книге американского популяризатора О. О. Байндера в общедоступной форме рассказывается о многочисленных космических загадках. Некоторые из них уже «с бородой», другие связаны с открытиями последних лет.
В этой книге затронут широкий круг проблем, связанных с биологией человека, — его место в природе, биологические и социальные особенности, закономерности его индивидуального и исторического развития, взаимоотношения с окружающей средой.Автор касается и многих других сторон человеческого бытия, которые приобрели в наши дни большую социальную и политическую значимость.Книга хорошо иллюстрирована, просто и ясно написана и будет интересна массовому читателю.
В книге известного популяризатора науки А. Азимова рассматривается сложный путь развития биологии с древних времен до наших дней. Автор уделяет внимание всем отраслям биологии, показывая их во взаимодействии со смежными науками.Читатель узнает о вкладе в биологию великих ученых всех времен — Гарвея, Левенгука, Геккеля, Дарвина, Пастера, Ивановского, Мечникова, Павлова и других.Написанная просто и доступно, книга будет интересным и полезным чтением для преподавателей высшей школы, учителей, студентов, школьников и для всех любителей естественных наук.
Книга известных американских ученых, супругов Лоруса Дж. Милна и Маргарет Милн, «Чувства животных и человека» — занимательный, а местами и поэтичный рассказ об ощущениях, свойственных живым существам. О сложных проблемах бионики авторы говорят легко и просто, без излишней наукообразности. Мы узнаем из книги, почему пчелы не видят красного цвета, как птицы ориентируются при перелетах, каким образом летучие мыши чувствуют преграды на своем пути и многое, многое другое. При этом Милны все время сравнивают чувства животных с человеческими чувствами, наводят читателя на мысль о том, что живые организмы с их сложной и малоизученной структурой органов чувств представляют большой интерес не только для биологов, но и для физиков, математиков и особенно конструкторов, создающих самоорганизующиеся устройства.