Биология в новом свете - [12]
Математическое обоснование тривиального — что это? Опять игра? Отнюдь нет! То, чем мы здесь занимаемся, относится к области бурно развивающейся сейчас нумерической таксономии. Облако точек вытягивается в длину и разделяется — возникает новый вид. Облако плывет — вид изменяется. Облака находятся близко или далеко друг от друга — это характеризует степень родства различных видов. В принципе все эти процессы можно рассчитать. Но здесь не обойтись, конечно, без быстродействующих электронных вычислительных машин.
Измерение плюс вычисление — это только один из возможных путей, ведущих к пониманию формы живого. Сколько нужно цифр чтобы правильно отобразить форму листа, контуры лягушки или панцирь рака? Конечно, с помощью числового метода мы можем охарактеризовать эти формы с большей или меньшей точностью, в зависимости от числа измеряемых параметров. Но это недостойно истинного математика; к тому же каждое новое измерение увеличивает степень многомерности фазового пространства, что делает расчеты неоправданно сложными. Значительно удобнее выявлять формы не по цифрам, а по аналогии. Это значит, что мы ищем математическую кривую, которая соответствует интересующей нас форме, т. е. аналогична ей, и может быть выражена формулой с возможно меньшим количеством постоянных величин, или констант.
Математикам известна такая универсальная формула, или, точнее, функция, которая позволяет математически выразить почти любую кривую, — это так называемый полином. Он записывается в виде ряда, который можно продолжать сколь угодно долго, но математик ограничивается лишь действительно необходимым числом членов, ибо с каждым новым членом полином все усложняется. Уравнение этого ряда выглядит так:
Оно показывает, как изменяется величина у в зависимости от изменения независимо меняющейся величины x. Обычно говорят, что y есть функция от x. Если значения x и у откладывать по осям системы координат, то мы получим кривую. Буквы a>0, a>1, a>2, a>3, a>4, a>5, a>6,... обозначают константы, они могут быть положительными и отрицательными, большими, малыми и даже равными нулю. Меняя значения этих констант, математик "изгибает" кривую до тех пор, пока она не примет желаемую форму. Для описания простых кривых достаточно ограничиться малым количеством членов такого полинома. Сколько нужно сделать отдельных измерений, чтобы получить изображенный на рисунке полином четвертой степени, т. е. полином, содержащий член a>4x>4? Чтобы записать точную формулу, требуется только пять значений, а именно константы a>0, a>1, a>2, a>3 и a>4. Собственно говоря, можно даже обойтись без первого значения, т. е. положить a>0 = 0, тогда ось симметрии листа будет скользить по оси абсцисс. Мы видим, что с каждым новым членом наш полином описывает форму листа несколько точнее. Таким образом, с помощью полинома мы можем описать формы любых объектов независимо от их размеров, а также сравнивать их между собой.
С помощью полинома, универсальной математической формулы, можно получить почти любую кривую. Чем сложнее кривая, тем большее число членов должен включать соответствующий полином. Можно попытаться подобрать полином, описывающий, например, форму листа
'Машинная улитка'. ЭВМ рассчитала форму улитки, которая лучше всего соответствует реальной
Если мы хотим получить замкнутую кривую, то есть представить лист целиком, то гораздо удобнее записать его форму в так называемых полярных координатах как функцию длины и угла вектора, поворачивающегося вокруг координатной оси.
На следующем рисунке показано, как можно с помощью ЭВМ обсчитать раковину улитки. Структуры аммонитов[3], так называемые лопастные, или шовные, линии, можно также выразить математически и соответствующие формулы ввести в память ЭВМ, что позволяет детально анализировать форму структур. Это имеет большое значение в палеонтологии и геологии, поскольку аммониты являются одной из самых важных групп "руководящих" ископаемых в некоторых слоях осадочных пород и по малейшим изменениям формы их лопастных линий можно судить о возрасте геологической породы.
Лопастные линии в раковинах аммонитов. Эти кривые можно выразить математически и ввести в память ЭВМ
Итак, форму живого организма можно не только характеризовать размерам, но и описать математически.
Теперь попытаемся с помощью математических формул представить какой-нибудь биологический процесс, например выразить кривую роста. Уму непостижимо: сначала математическое описание формы, а теперь — биологического процесса! Но это кажется трудным только неспециалисту в силу инертности нашего повседневного мышления, привычки воспринимать лишь то, что мы непосредственно ощущаем органами чувств. Форму, то есть три измерения — длину, ширину и высоту, — мы "видим". А изменение этой формы, иначе говоря, изменение этих трех параметров во времени, мы "переживаем". Мы должны запастись терпением и временем и ждать. Для математика время, выраженное в секундах, часах, днях и т. д., такая же счетная величина, как длина и ширина. Если замысловатую форму растения мы выразили с помощью n параметров, представив ее точкой в n — мерном фазовом пространстве, то нам ничего не стоит добавить к ним (n + 1)-й параметр, время, и рассматривать изменение формы растения, т. е. его рост, как ход кривой в (n + 1)-мерном фазовом пространстве.
История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
О чем рассказал бы вам ветеринарный врач, если бы вы оказались с ним в неформальной обстановке за рюмочкой крепкого не чая? Если вы восхищаетесь необыкновенными рассказами и вкусным ироничным слогом Джеральда Даррелла, обожаете невыдуманные истории из жизни людей и животных, хотите заглянуть за кулисы одной из самых непростых и важных профессий – ветеринарного врача, – эта книга точно для вас! Веселые и грустные рассказы Алексея Анатольевича Калиновского о людях, с которыми ему довелось встречаться в жизни, о животных, которых ему посчастливилось лечить, и о невероятных ситуациях, которые случались в его ветеринарной практике, захватывают с первых строк и погружают в атмосферу доверительной беседы со старым другом! В формате PDF A4 сохранен издательский макет.
Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В предлагаемой вниманию читателей книге американского популяризатора О. О. Байндера в общедоступной форме рассказывается о многочисленных космических загадках. Некоторые из них уже «с бородой», другие связаны с открытиями последних лет.
В этой книге затронут широкий круг проблем, связанных с биологией человека, — его место в природе, биологические и социальные особенности, закономерности его индивидуального и исторического развития, взаимоотношения с окружающей средой.Автор касается и многих других сторон человеческого бытия, которые приобрели в наши дни большую социальную и политическую значимость.Книга хорошо иллюстрирована, просто и ясно написана и будет интересна массовому читателю.
В книге известного популяризатора науки А. Азимова рассматривается сложный путь развития биологии с древних времен до наших дней. Автор уделяет внимание всем отраслям биологии, показывая их во взаимодействии со смежными науками.Читатель узнает о вкладе в биологию великих ученых всех времен — Гарвея, Левенгука, Геккеля, Дарвина, Пастера, Ивановского, Мечникова, Павлова и других.Написанная просто и доступно, книга будет интересным и полезным чтением для преподавателей высшей школы, учителей, студентов, школьников и для всех любителей естественных наук.
Книга известных американских ученых, супругов Лоруса Дж. Милна и Маргарет Милн, «Чувства животных и человека» — занимательный, а местами и поэтичный рассказ об ощущениях, свойственных живым существам. О сложных проблемах бионики авторы говорят легко и просто, без излишней наукообразности. Мы узнаем из книги, почему пчелы не видят красного цвета, как птицы ориентируются при перелетах, каким образом летучие мыши чувствуют преграды на своем пути и многое, многое другое. При этом Милны все время сравнивают чувства животных с человеческими чувствами, наводят читателя на мысль о том, что живые организмы с их сложной и малоизученной структурой органов чувств представляют большой интерес не только для биологов, но и для физиков, математиков и особенно конструкторов, создающих самоорганизующиеся устройства.