Биография атома - [21]

Шрифт
Интервал

Крупнейшие открытия, связанные с явлением радиоактивности, дали толчок к развитию физической теории строения вещества.

Об этом и думал Эйнштейн, сидя за конторкой патентного бюро. Формула за формулой ложилась на листки бумаги после того, как у него в голове складывалась какая- либо законченная, сформировавшаяся мысль.

Несколько своих небольших работ он послал в научный журнал «Анналы физики». Их опубликовали. 30 сентября 1905 г. вышел очередной номер берлинского журнала «Анналы физики». В заголовке одной из статей стояло: «К электродинамике движущихся тел». Под статьей была подпись — Альберт Эйнштейн. Эта дата стала днем рождения знаменитой теории относительности, совершившей величайший переворот в представлении человека о природе вещей.

Новая теория заставила ученых по-иному взглянуть на проблемы, которые казались давным-давно решенными.

Так повседневные наблюдения сделали для нас несомненным закон сложения скоростей. В чем он заключается?

Предположим, вы едете в поезде. Если вы пройдете по вагону в направлении движения поезда, то ваша скорость движения относительно вагона сложится со скоростью вагона относительно Земли. Если же пойдете вдоль вагона в противоположном направлении, то вычтется. Это очевидно каждому. Однако не следует забывать, что мы имеем дело с очень небольшими скоростями. Ведь даже самые быстрые ракеты пролетают всего лишь несколько километров в секунду, в то время как скорость заряженных частиц, испускаемых радиоактивными веществами, измеряется тысячами километров в секунду. А скорость света равна 300 тысячам километров в секунду. Возникает, естественно, вопрос: будет ли закон сложения скоростей справедлив при скоростях, близких к скорости света? Ответ на него и содержится в ставшей знаменитой статье Альберта Эйнштейна, оказалось, что при таких больших скоростях законы считавшейся незыблемой механики, в том числе и закон сложения скоростей, перестают быть верными. Величайшая заслуга Эйнштейна состояла в том, что он открыл законы, которыми объясняются процессы, происходящие при любых скоростях. Естественно, закон сложения скоростей в механике Эйнштейна стал значительно более сложным, чем в классической механике. Как и следовало ожидать, оказалось, что в случае малых скоростей новая механика Эйнштейна совпадает с классической.

Трудно переоценить значение этой работы Эйнштейна. Дальнейшее развитие атомной физики тесно связано с изучением взаимодействия вещества с частицами, обладающими громадными скоростями. Ученые получили возможность не только правильно описывать такого рода взаимодействия, но и рассчитывать гигантские установки для получения высокоскоростных частиц. Такие установки, называемые ускорителями, используются для бомбардировки атомов, и расчет этих установок связан в первую очередь с теорией относительности Эйнштейна.

Основная формула атомного века

В том же 1905 г. Эйнштейн опубликовал в журнале «Анналы физики» еще одну статью. Она называлась «Зависит ли инертность тела от содержания в нем энергии?» Всего три страницы журнального текста занимала статья, но она стоила многих томов этого старого физического журнала.

Статья явилась продолжением работы Эйнштейна над теорией относительности и содержала очень важный для биографии атома вывод из этой теории. Он касался взаимосвязи между массой любого тела и содержащейся в нем полной энергией.

Эйнштейн писал тогда: «...Я пришел к выводу, что масса является мерилом всей содержащейся в телах энергии. Заметным образом убыль массы в связи с выделением энергии должна наблюдаться у радия...»

До Эйнштейна физики рассматривали вещество и энергию отдельно друг от друга. Веществом считали все существующие в природе тела, а энергией — все то, что может сообщать телу способность совершить какую-то работу (свет, тепло и т. п.).

Великий русский ученый Ломоносов открыл закон, что вещество не может исчезать или возникать вновь. Это был закон сохранения вещества. Значительно позднее, а именно в 40-х годах XIX в., было установлено, что существует закон сохранения энергии. Энергия не может исчезать или возникать из ничего. Она только переходит из одной формы в другую.

Эйнштейн связал воедино два понятия — вещество и энергию. Каждому количеству вещества соответствует определенное количество энергии Е. Между ними существует зависимость, определяемая формулой

Е = mс>2.

Это и есть основная формула атомного века. За пять лет до создания теории Эйнштейна, в 1900 г., замечательный русский физик Николай Петрович Лебедев опытным путем пришел к выводу о взаимосвязи между энергией света и его массой.

Но Лебедев рассматривал только частный случай, а Эйнштейн получил универсальную зависимость. Энергия Е, содержащаяся в теле, пропорциональна его массе т. И множителем пропорциональности является скорость света, взятая в квадрате.

Мы знаем, как велика скорость света —300 тысяч километров в секунду. Как же велика должна быть энергия, заключенная даже в маленьком кусочке вещества? Расчет показывает, что в одном грамме вещества содержится энергия, равная примерно двадцати триллионам калорий. Насколько велика эта величина, вы можете судить из следующего. Электроэнергия, вырабатываемая в настоящее время в год всеми электростанциями во всех странах мира, эквивалентна энергии, содержащейся всего в нескольких десятках килограммов вещества. Другими словами, если бы можно было выделить и целиком использовать энергию, скрытую в веществе, то для удовлетворения потребностей человечества в энергии потребовалось бы всего несколько десятков килограммов вещества.


Рекомендуем почитать
Охотники за частицами

В последние годы вышла на передний рубеж науки и начала бурно развиваться физика элементарных частиц. Она ставит перед собой самую дерзновенную цель — познать наиболее сокровенные тайны природы, познать законы, управляющие миром, который не увидишь ни в какие микроскопы. Одни из этих законов уже познаны. Другие — наиболее таинственные, а потому и самые важные — ждут своего открытия. Эти открытия неразрывно связаны с поиском новых частиц. В последние годы «охота» за частицами приняла неведомый до сих пор размах.


Белые карлики. Будущее Вселенной

Перед вами первая книга на русском языке, почти целиком посвященная остывающим реликтам звезд, известным под именем белых карликов. А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных. История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса. Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.


Атомный проект. Жизнь за «железным занавесом»

Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.