Бесконечная сила - [22]

Шрифт
Интервал

Точно так же он описывает сегмент параболы – как «состоящий из всех параллельных линий, нарисованных внутри фигуры»[66]. Привлечение актуальной бесконечности, по его оценке, понижает статус этого рассуждения до эвристического – то есть это средство найти ответ, но не доказать его правильность. В письме Эратосфену он преуменьшает значение метода, говоря, что это не более чем своего рода указание на то, что вывод будет верным[67].

Каким бы ни был статус метода Архимеда, он обладает свойством e pluribus unum. Это латинское выражение, означающее «из многих – единое», используется как девиз на гербе США. Из бесконечного множества отрезков, составляющих параболу, возникает единая область. Думая о ней как о массе, Архимед перемещает ее, отрезок за отрезком, на левое сиденье доски-качалки. Теперь бесконечность отрезков представлена массой, сосредоточенной в одной точке. Единое заменяет многое, представляя его точно и верно.

То же самое справедливо и для уравновешивающего внешнего треугольника на правой стороне доски. Континуум вертикальных линий превращается в одну точку – центр тяжести. Она тоже заменяет целое. Бесконечность схлопывается в единое, e pluribus unum. Только это не поэзия и не политика, а истоки интегрального исчисления. Треугольники и сегменты парабол каким-то таинственным образом в каком-то смысле, который Архимед не смог строго определить, явно эквивалентны бесконечности из вертикальных линий.

Хотя Архимеда, похоже, смущает его заигрывание с бесконечностью, у него хватает смелости в этом признаться. Любой, кто пытается измерить криволинейную форму – найти длину границы или объем, который она заключает, – вынужден сражаться с пределом бесконечных сумм бесконечно малых частей. Осторожные люди могут попытаться обойти эту необходимость с помощью метода исчерпывания. Но на деле от нее никуда не деться. Справляться с криволинейными формами – так или иначе значит справляться с бесконечностью. Архимед открыто об этом говорит. Когда ему нужно, он может нарядить свои доказательства в респектабельные одежды, используя конечные суммы и метод исчерпывания. Но в глубине души он лукавит. Он признает, что мысленно взвешивает фигуры, мечтает о рычагах и центрах тяжести, взвешивая области и твердые тела отрезок за отрезком, по одному бесконечно малому кусочку за раз.

Архимед применил этот метод ко многим другим задачам о криволинейных формах. Например, для поиска центра тяжести полусферы, параболоида и сегментов эллипсоидов и гиперболоидов. Его любимый результат, который касался соотношения объемов и площадей поверхности шара и цилиндра[68], нравился ему настолько, что он завещал высечь его на могильном камне. Представьте себе шар, точно размещенный в цилиндрической коробке (шар, вписанный в цилиндр).



С помощью метода Архимед установил, что объем вписанного в цилиндр шара составляет 2/3 от объема цилиндра, а площадь поверхности этого шара – 2/3 от площади поверхности описанного цилиндра. Обратите внимание, что он не дал формул для объема или площади поверхности сферы, как мы сделали бы сегодня. Он выразил свой результат в виде пропорций. Это классический греческий стиль. Все выражается в пропорции. Область сравнивали с другой областью, а объем – с другим объемом. И когда в пропорциях получились небольшие целые числа, как здесь (3 и 2) или в случае сегмента параболы (4 и 3), это было источником непередаваемого удовольствия. В конце концов, эти же самые соотношения 3:2 и 4:3 имели особое значение для древних греков из-за их роли в пифагорейской теории музыкальной гармонии. Вспомните, что, если защипнуть две струны с соотношением длин 3:2, они звучат гармонично, будучи разделенными через интервал, известный как квинта. Аналогично струны в соотношении 4:3 дают кварту. Такие числовые совпадения между гармонией и геометрией, должно быть, восхищали Архимеда.

Его слова в трактате «О шаре и цилиндре» показывают, насколько ему нравится результат: «Разумеется, эти свойства были присущи этим телам всегда, но они остались неизвестными всем геометрам»[69]. Не обращайте внимания на нотки гордости, а сосредоточьтесь на его утверждении, что «свойства были присущи этим телам всегда, но они остались неизвестными». Здесь он выражает философию математики, близкую сердцам всех математиков. Мы чувствуем, что открываем математику. Результаты уже существуют и ждут нас. Они всегда были присущи телам. Мы их не изобретаем. В отличие от Боба Дилана или Тони Моррисона, мы не пишем музыку или романы, которых раньше не было, а открываем уже имеющиеся факты, которые присущи изучаемым нами объектам. Хотя у нас есть творческая свобода изобретать сами объекты – создавать такие идеализации, как сферы, круг и цилиндры, как только мы это делаем, они начинают жить собственной жизнью.

Когда я читаю, как Архимед радуется обнаружению соотношений для площади поверхности и объема шара, я испытываю аналогичные ощущения. Или, скорее, понимаю, что он чувствовал то же самое, что и все мои коллеги-математики. Хотя нам говорят, что «прошлое – это чужая страна»[70], она не может быть чужой во всех отношениях. Люди, о которых мы читаем у Гомера и в Библии, очень похожи на нас. То же самое, по-видимому, верно и в отношении древнегреческих математиков, по крайней мере Архимеда, единственного, кто впустил нас в свое сердце.


Еще от автора Стивен Строгац
Ритм Вселенной. Как из хаоса возникает порядок

В книге Стива Строгаца представлен увлекательный обзор того, как происходит спонтанное упорядочение ритмов в природе. Автор затрагивает широкий спектр научных и математических вопросов, но основное внимание уделяет феномену синхронизации, который наблюдается в свечении светлячков, ритмичном биении сердец, движении планет и астероидов. Используя для иллюстрации своих глубоких идей интересные метафоры и жизненные ситуации, Строгац создал настоящий шедевр, который погружает читателя в восхитительный мир научных открытий.Книга будет полезна всем, кто интересуется естественными науками и хочет лучше разобраться в устройстве окружающего мира.На русском языке публикуется впервые.


Удовольствие от Х. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире

Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.


Рекомендуем почитать
Почему Холокост

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Мы - поколение великого потопа

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Две загадки лунной дилогии

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Тайна субъективных переживаний поддается разгадке

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


И по Арсеньеву прошлась 'Лубянская лапа ЧЕКА'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Об опыте Стефана Маринова

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Как рождаются эмоции

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания. Эта книга совершает революцию в понимании эмоций, разума и мозга.


Семь с половиной уроков о мозге

Лиза Фельдман Барретт, известная ученая, занимающаяся исследованиями мозга, развенчивает мифы, настолько плотно укоренившиеся в нашем сознании, что многие годы они кажутся нам неопровержимыми научными фактами. Небольшие, интересные и понятные эссе (плюс одна короткая история об эволюции мозга) откроют вам дверь в удивительный мир человеческого разума. Вы узнаете, как начал формироваться мозг, какова его структура (и почему это важно понимать), как ваш мозг взаимодействует с мозгом других людей и создает всю ту реальность, в которой вы живете.


Десять уравнений, которые правят миром. И как их можете использовать вы

Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.


Парадокс упражнений

Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.