Беседы о физике и технике - [33]

Шрифт
Интервал


ВАЖНЫМ ОТКРЫТИЕМ СТАЛО ИЗОБРЕТЕНИЕ РАДИО.

Еще при жизни Герца к нему обратился один немецкий инженер с вопросом: не считает ли он возможным использовать открытие электромагнитных волн для связи (для беспроволочного телеграфа)? В своем ответе Герц высказал сомнение по поводу этой возможности. Однако идея о применении электромагнитных волн для связи вскоре (1895 г.) была осуществлена на практике русским ученым А. С. Поповым.

Приемник первоначально регистрировал радиосигналы, источником которых было атмосферное электричество. Затем Попов сконструировал первый в мире передатчик радиосигналов и в 1896 г. произвел первую в мире демонстрацию передачи радиограммы.

Передатчик и приемник находились на расстоянии 250 м. Первая радиотелеграмма состояла из двух слов: «Генрих Герц».

Излучать, т. е. посылать сигналы без проводов, — вот каков смысл латинского слова «радио», обозначившего наступление новой эры в развитии техники вообще, в развитии техники связи в первую очередь.


КАКОВЫ БЫЛИ ПЕРВЫЕ ПРАКТИЧЕСКИЕ ПРИМЕНЕНИЯ НОВОГО ВИДА СВЯЗИ?

Не каждый обладает способностью оценить значение новых открытий. Когда Попов обратился в Морское ведомство с просьбой выделить для продолжения опытов 1000 руб., морской министр ответил: «На такую химеру отпускать деньги не разрешаю».

Тем не менее с помощью этой «химеры» Попов два года спустя обеспечил связь между двумя кораблями на расстоянии 40 км, а в 1900 г. передавал по радио указания из Кронштадта на остров Гогланд, где велись работы по спасению броненосца, севшего на мель.

Создание первой линии радиотелеграфной связи случайно совпало с каким-то торжественным юбилеем царской семьи. Местные власти решили, что первая радиограмма будет прекрасным подарком царской фамилии, и заготовили поздравительный текст. Но вместо этого Попов, на свой страх и риск, передал сообщение о том, что шторм унес в море льдину, на которой остались 27 рыбаков. Вышедший навстречу корабль вовремя подошел им на помощь. Беспроволочная связь помогла спасти людям жизнь.

Так радио стало получать признание.


КАК РАЗВИВАЛОСЬ РАДИО ПОСЛЕ ЭТОГО?

Существовавшие в это время приборы и оборудование позволяли передавать радиосигналы на относительно небольшие расстояния. Необходимо было создать усилитель для электрических сигналов любой частоты.

Еще в 1833 г. Т.Эдисон, занимаясь усовершенствованием электрических осветительных ламп, обнаружил явление термоэлектронной эмиссии. Дальнейшее изучение физиками этого явления привело к изобретению двухэлектродной лампы — диода. В 1909 г. английский физик Ф. Флеминг предложил использовать диод в качестве детектора в радиоприемных устройствах.

В 1907 г. американский ученый Ли де Форест разработал трехэлектродную лампу, что дало возможность, используя ее в качестве усилителя, осуществлять передачу электромагнитных сигналов на большие расстояния и принимать слабые.

Классическая схема лампового генератора была предложена в 1913 г. австрийским радиотехником Мейснером. Важные усовершенствования в генераторную лампу были внесены нашими соотечественниками Н. Д. Папалекси и М. А. Бонч-Бруевичем.


СЛЕДУЮЩИЙ ШАГ-ИЗОБРЕТЕНИЕ ТЕЛЕВИДЕНИЯ.

К 20-м годам XX столетия оказались налицо все необходимые предпосылки для осуществления многочастотной передачи неподвижных и движущихся изображений как по проводам, так и по радио. Радио, сделав возможной беспроволочную связь на практически любых расстояниях, породило совершенно новые виды передачи информации — радиовещание, а затем и телевидение.

Изобретение же полупроводниковых электронных приборов принесло новые успехи и позволило осуществлять передачу сигналов уже не только в земных, но и в космических масштабах.

Добавление изображения к радиопрограммам является одним из чудес современной науки и техники. Важнейшей проблемой, перед которой стоят сегодня инженеры, является передача телевизионных волн на дальние расстояния. Частоты, применяемые в телевидении, настолько высоки, что ионосферные слои, отражающие сравнительно длинные радиоволны, по отношению к коротким телевизионным волнам являются форменным «решетом». Телевизионные волны просто уходят сквозь эти слои в мировое пространство и уже не возвращаются на Землю.

Поэтому телевизионные сигналы невозможно передавать дальше, чем на расстояние «прямого видения», а это расстояние из-за кривизны земной поверхности обычно не очень велико. Кроме того, очень короткие радиоволны сильно ослабляются вследствие поглощения их в земной атмосфере.

Проблема дальних телевизионных передач решается путем создания ретрансляционных станций или спутников связи.


РАССКАЖИТЕ О РАДИОЛОКАЦИИ.

Свойство радиоволн отражаться от предметов было использовано в радиолокации. Точность определения направления движения объекта, его размеров, скорости перемещения повышается, когда антенна станции излучает волны узким лучом. А создать такой луч можно только в том случае, если размеры антенны значительно больше, чем длина излучаемых волн.

Первые радиолокационные станции — радары (это было в начале 40-х годов) собирали в луч метровые волны с помощью огромных антенн. Луч нащупывал в небе противника и указывал, куда направить снаряд зенитного орудия. Долго мириться с таким положением летчики не могли. Необходимо было как можно скорее снабдить локаторами и самолеты. Только как это сделать? Ведь антенну размером с двухэтажный дом не взгромоздить на самолет! Эту задачу можно было решить от противного: вместо того, чтобы увеличивать размеры антенны, уменьшили длину волн.


Рекомендуем почитать
В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Радиоразведка России. Перехват информации

Любое государство сейчас не может существовать без технической разведки. Радиоразведка появилась вместе с радиосвязью в начале ХХ века, а компьютерная разведка — вместе с глобальной сетью Интернет в 1980-х годах. Сборник содержит материалы по истории рождения и эволюции техники и методов радиоэлектронной разведки и контрразведки Российской империи, СССР и современной России; описывает успехи радиоразведки по перехвату информации. «Кто владеет информацией, тот владеет миром» (Натан Ротшильд)


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».