Беседы о физике и технике - [16]

Шрифт
Интервал


РАССКАЖИТЕ ПОДРОБНЕЕ ОБ ИСТОРИИ РАЗВИТИЯ ЭЛЕКТРИЧЕСТВА И МАГНЕТИЗМА. ОНА ИНТЕРЕСНА ТЕСНЫМ ПЕРЕПЛЕТЕНИЕМ ТЕОРЕТИЧЕСКИХ ИССЛЕДОВАНИЙ С ПРАКТИЧЕСКОЙ РЕАЛИЗАЦИЕЙ ПОЛУЧАЕМЫХ РЕЗУЛЬТАТОВ.

Учение об электричестве, долгое время представлявшее собой совокупность несистематизированных фактов и противоречивых гипотез, за последние сто лет превратилось в одну из обширных, фундаментальных областей физики и современной техники.

К середине XIX в. основные экспериментальные законы, описывающие поведение электрических зарядов, были хорошо известны. Так, открытие Грэем электрической проводимости как будто бы подтверждало идею о том, что электричество фактически является «веществом» особого рода, веществом, которое может двигаться через проводники. Открытие Дюфе (1734) факта существования двух видов электричества осложнило проблему.

Природа этого «вещества» продолжительное время являлась предметом интенсивных теоретических и экспериментальных исследований.

Только в 1775 г. француз Ш. О. Кулон (1736–1806) поставил первый количественный эксперимент. В эти же годы разрабатывались и источники электрической энергии. Так, 1745 год отмечен изобретением лейденской банки, в 1782 г. появился конденсатор Вольта, а в 1801 г. — вольтов столб.

В начале XIX в. русский ученый В. В. Петров (1761–1834) изготовил гальваническую батарею большой мощности, что позволило получить в 1802 г. электрическую искру при разрыве цепи батареи. В место разрыва им были помещены угольки, дающие возможность получать яркое пламя. В. В. Петров использовал полученную дугу в качестве первого источника электрического освещения. Одновременно им было предложено использование электрической дуги для плавления металлов в так называемых дуговых печах. Эти открытия послужили началом создания нового прикладного направления в науке — электротехники.


А ДУГОВОЙ РАЗРЯД УСПЕШНО «РАБОТАЕТ» И СЕЙЧАС.

В настоящее время дуговой разряд используют в качестве мощного источника света в прожекторах, проекционных аппаратах и киноаппаратах. В металлургии широко применяют электропечи, в которых источником теплоты служит дуговой разряд. Дуговой разряд используют и для сварки металлов.


ВЕРНЕМСЯ К ИСТОРИИ. ВЕДЬ ИССЛЕДОВАНИЯ ЭЛЕКТРИЧЕСТВА ТЕСНО СВЯЗАНЫ С ИЗУЧЕНИЕМ СТРОЕНИЯ ВЕЩЕСТВА?

В начале XIX в. имелись веские доказательства того, что химические процессы и поведение газов можно наилучшим образом объяснить исходя из «атомной» структуры вещества. К 1825 г. казалось достаточно ясным, что тысячи различных химических соединений следует рассматривать как вполне определенные комбинации атомов сравнительно небольшого числа элементов.

Разложение воды с помощью электрического тока (гальванической батареи Вольта) на кислород и водород было воспринято как одно из доказательств того, что движущееся электричество фактически идентично электричеству, обусловленному трением (т. е. статическому электричеству), поскольку еще с 1750 г. было известно, что последнее может вызвать химическое разложение.

В 1833 г. Майкл Фарадей (1791–1867) установил законы электролиза, в основу которых были положены строгие количественные соотношения.

Было установлено, что между количеством электричества, прошедшего через раствор, и количеством выделенного на электродах вещества существуют определенные строгие соотношения. Может быть, и электрический заряд тоже состоит из отдельных «атомов электричества?» Тогда можно было бы предположить, что и каждый атом вещества несет с собой один или несколько «атомов электричества». И если это действительно так, то легко можно объяснить результаты опыта. Видимо, электрический заряд состоит из мельчайших неделимых порций положительного и отрицательного электричества.

Эти электрические частицы тесно связаны с атомами любых веществ. При растворении эти электрические частицы перемещаются от одного атома к другому. При этом одна частица имеет положительный заряд, другая — отрицательный. Такие заряженные частицы были названы ионами — от греческого слова «ион» — идущий, странствующий. Отсюда следовало, что электрический ток в растворах представлял собой два потока положительных и отрицательных ионов.

Работы Фарадея хотя и не дали научного ответа на природу электричества, однако послужили убедительным подтверждением предположения, что вещество по своей природе имеет атомную структуру и в процессе электролиза каждый атом получает вполне определенное количество электричества.


ЭЛЕКТРОЛИЗ ЖЕ С ТЕХ ПОР ПОЛУЧИЛ РАБОЧУЮ ПРОФЕССИЮ…

Электролиз широко применяют в настоящее время в технике для различных целей. Электрическим способом поверхности одного металла покрывают тонким слоем другого (никелирование, хромирование, омеднение и т. п.). Это прочное покрытие защищает поверхность от коррозии.

При помощи электролиза осуществляют очистку металлов от примесей. Так, полученную из руды неочищенную медь отливают в форме листов, которые затем помещают в ванну в качестве анодов. При электролизе медь анода растворяется, примеси, содержащие ценные и редкие металлы, выпадают на дно, а на катоде оседает чистая медь.

При помощи электролиза получают алюминий из расплава бокситов. Именно этот способ получения алюминия сделал его дешевым и наряду с железом самым распространенным в технике и быту металлом.


Рекомендуем почитать
В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Радиоразведка России. Перехват информации

Любое государство сейчас не может существовать без технической разведки. Радиоразведка появилась вместе с радиосвязью в начале ХХ века, а компьютерная разведка — вместе с глобальной сетью Интернет в 1980-х годах. Сборник содержит материалы по истории рождения и эволюции техники и методов радиоэлектронной разведки и контрразведки Российской империи, СССР и современной России; описывает успехи радиоразведки по перехвату информации. «Кто владеет информацией, тот владеет миром» (Натан Ротшильд)


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».