Беседы о бионике - [164]

Шрифт
Интервал

Интересно, что голубь, получая вознаграждение только за бракованные детали, никогда не "жульничает", чтобы получить лишнее зернышко. Опыт советских инженеров по применению "голубиного ОТК" показывает, что на первоначальное обучение новичка функциям контролера нужно 3 — 5 дней, а через 2 — 3 недели "квалификация" его значительно повышается и, чем тоньше становятся дефекты в контролируемой продукции, тем бдительнее делается птица. Производительность голубя — 3 — 4 тысячи деталей в час, работать он может несколько часов подряд, не обнаруживая признаков усталости и не снижая качества контроля.

"А если голубь заснет или перестанет клевать? — спросил журналист у инженера Быкова.

— Блокирующее устройство прекратит подачу деталей.

— А если будет так много брака, что голуби объедятся?

— Тогда надо гнать бракоделов с работы, — смеясь ответил Анатолий Михайлович. — В ближайшее время мы хотим внедрить голубиный контроль на небольшой пуговичной фабрике. Сейчас этим делом там заняты семь женщин.

— Допустим, голубь надежнее человека. Но ведь имеются и контрольные автоматы для разбраковки шариков. Они-то уж абсолютно надежны.

— Пока таких автоматов нет, и вряд ли они скоро появятся. Для этого их нужно обучить распознаванию образов, т. е. решить сложнейшую задачу современной кибернетики, снабдить автоматы высококачественной оптикой с большой разрешающей силой, составить для каждой детали свою программу. А голубь с детали на деталь переходит легко. На переучивание ему достаточно двух-трех часов".

И наконец, еще один интересный аспект предполагаемого использования голубей. Сотрудник Стэнфордского университета доктор Сонтаимер задался целью обучить голубей ... грамоте! Стаи по 26 голубей обучаются грамоте по весьма своеобразной системе: каждый голубь должен запомнить только одну определенную букву алфавита. Такие стаи собираются разместить в отделах всех крупнейших американских банков. Получив чек и "прочитав" фамилию лица, его подписавшего, голуби должны отстучать поочередно все буквы этой фамилии на клавишах специального автомата, который затем переправит чек для оплаты в автоматизированную бухгалтерию.

Конечно, можно заставить сами автоматы различать подписи и совершать требуемые операции, но такие автоматы стоят чрезвычайно дорого. Голуби же почти ничего не стоят, а расходы по их содержанию не идут ни в какое сравнение с зарплатой специалистов-контролеров.

Таким образом, вопрос о том, что, как и чем видит какая-либо особь, в настоящее время, когда могущественная электронная и вычислительная техника позволяет анализировать и моделировать чрезвычайно сложные устройства и функции биологических систем, представляет скорее утилитарный, чем чисто познавательный интерес. Приведенные выше примеры, нам думается, убедительно подтверждают это.

В ряду задач, стоящих перед бионикой, исследование и моделирование процессов зрительного восприятия, конструктивных особенностей зрительного анализатора человека и животных занимают важнейшее место. Дело в том, что более 90% всей информации о внешнем мире поступает в бионическую систему через глаза. Недаром ученые называют глаза "мозгом, вынесенным на периферию".

Рис. 4. Схема строения глаза человека. 1 — ресничная мышца; 2 — радужная оболочка; 3 — водянистая влага; 4 — зрачок; 5 — роговица; 6 — связка, поддерживающая хрусталик; 7 — хрусталик; 8 — стекловидное тело; 9 — сетчатка; 10 — центральная ямка; 11 — слепое пятно; 12 — зрительный нерв. Оптическая ось показана пунктиром


Бионические исследования зрительных анализаторов, созданных природой, — это не просто одно из центральных направлений молодой науки, это одно из тех немногих ее направлений, в котором специалисты ожидают наиболее быстрого выхода результатов научных изысканий в практику. Именно в этой области, где техника испытывает особенно острую нужду в новых идеях конструирования и новых принципах работы систем, живая природа располагает чрезвычайно широкой "номенклатурой" существенно различающихся по сфере деятельности и конструкций устройств, техническое воспроизведение которых, по-видимому, надолго обеспечило бы наши потребности.

Возьмем наш зрительный анализатор (рис. 4). Сетчатка глаза воспринимает зрительную информацию примерно 130 миллионами одновременно работающих рецепторных клеток (125 миллионов палочек и 6,5 миллиона колбочек). В этих клетках под действием света возникает возбуждение, которое по нервным волокнам передается зрительному анализатору, расположенному в коре затылочной доли мозга. Общее число нервных волокон в зрительном нерве достигает 1 миллиона, так что в среднем 1 волокно проводит возбуждения от 130 фоторецепторов. Диапазон чувствительности сетчатки тянется от энергии, равной нескольким квантам света[23], до энергии световых потоков, поступающих в глаз от Солнца. Если учесть, что минимально возможное количество световой энергии равно 1 кванту, а человеческий глаз способен зарегистрировать колебания световой энергии в 5 — 10 квантов, то можно сказать, что чувствительность сетчатки доведена почти до предела. Современная радиоэлектронная аппаратура тоже может регистрировать самые ничтожные колебания интенсивности света. Однако существенная разница заключается здесь в том, что технические системы дают возможность регистрировать такие слабые сигналы при температурах жидкого гелия, т. е. в условиях, когда "тепловой шум" окружающей среды практически равен нулю. Человеческий же глаз имеет такую феноменальную чувствительность при температурах порядка 20 ° Ц, Кроме того, восприятие неподвижных предметов обеспечивается мелкими подергиваниями глаза, которые происходят непрерывно даже в те моменты, когда наблюдатель стремится фиксировать взгляд на какой-либо неподвижной точке. Частоты этих подергиваний лежат в пределах от 1 до 150 гц. Наконец, при рассматривании крупных объектов оба глаза строго синхронно совершают с большой угловой скоростью (до 400 ° в секунду) скачки от одной точки изображения к другой. При этом время рассматривания объекта распределяется следующим образом. На скачки затрачивается около 3% всего времени, а остальные 97% времени взгляд оказывается фиксированным на тех или иных наиболее ярких и важных элементах изображения. При рассматривании движущихся объектов глаза передвигаются с угловой скоростью, равной угловой скорости движения объекта относительно наблюдателя. Такое непрерывное слежение за объектом перемежается периодическими скачкообразными движениями глаза, имеющими своей целью корректировку ошибок. Благодаря бинокулярному зрению мы видим предметы объемно, телесно, можем определять расстояния между ними и их отдаленность. Наконец, наши глаза способны различать оттенки цветов — они воспринимают голубизну морской волны и зарево заката, золото осеннего листа и палитру Левитана.


Еще от автора Изот Борисович Литинецкий
Изобретатель - природа

Книга посвящена важным проблемам современности - прогнозированию погоды и землетрясений. Используя богатый фактический материал, автор знакомит читателей с созданными природой многочисленными живыми барометрами, термометрами, гигрометрами, сейсмографами и другими приборами, заблаговременно сигнализирующими человеку об изменении погоды и приближении подземных бурь. Книга будет интересна и полезна слушателям народных университетов естественнонаучных знаний и широкому кругу читателей.


На пути к бионике

Книга состоит из коротких рассказов о том, как человек пытался и пытается использовать живые организмы в самых различных областях своей деятельности. Из нее можно узнать о бактериях, помогающих добывать полезные ископаемые и очищать их от вредных примесей, о собаках, обнаруживающих неисправности в газовых магистралях, о голубях - технических контролерах, о муравьях - открывателях новых звезд, о живых барометрах и сейсмографах, о языке животных и многих других замечательных особенностях живых организмов.


Рекомендуем почитать
Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Перо и маска

«Настоящая книга представляет собою сборник новелл о литературных выдумках и мистификациях, объединенных здесь впервые под понятиями Пера и Маски. В большинстве они неизвестны широкому читателю, хотя многие из них и оставили яркий след в истории, необычайны по форме и фантастичны по содержанию».


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.