Белые карлики. Будущее Вселенной - [3]

Шрифт
Интервал

Отказ от птолемеевского геоцентризма и постепенный переход к гелиоцентрическому описанию Солнечной системы обычно называют Коперниканской революцией. Однако этот радикальный пересмотр теоретического фундамента наблюдательной астрономии стал лишь начальным этапом гораздо более глубокой и всеобъемлющей трансформации науки о Вселенной, которая заслуживает титула Посткоперниканской революции. Николай Коперник лишил Землю статуса центра мироздания и низверг до уровня обыкновенной околосолнечной планеты. Однако еще несколько десятилетий его гелиоцентрическая модель (кстати, весьма несовершенная) практически не использовалась тогдашними астрономами. Только в начале XVII в. Иоганн Кеплер на основе прецизионных наблюдений датского астронома Тихо Браге определил истинную (эллиптическую, а не круговую, как у Коперника) форму планетных орбит и установил математическую связь между их геометрическими параметрами и временем обращения вокруг Солнца.

Но это было только началом Посткоперниканской революции. Астрономам потребовалось еще 100 лет для того, чтобы освоить телескопическую технику и опыт ее использования в обсерваториях. Хотя первые великие результаты оптической астрономии (открытие Галилеем спутников Юпитера и фаз Венеры, демонстрация многозвездности Млечного Пути, наблюдение солнечных пятен) были получены в первые годы применения телескопов, следующим поколениям ученых предстояло узнать еще очень многое. На этом пути были открыты спутники и кольца Сатурна, выполнено первое, хотя и очень неточное, измерение скорости света, обнаружены собственные движения звезд, определен период вращения Юпитера. Астрономии еще нужно было дождаться открытия Ньютоном закона всемирного тяготения и создания тремя поколениями блестящих математиков дифференциального и интегрального исчисления и способов решения дифференциальных уравнений. Так был постепенно накоплен арсенал математических приемов, только на основе которых и могли появиться эффективные вычислительные методы ньютоновской небесной механики.

Синтез этих нововведений завершился лишь в первой половине XVIII в., и именно он ознаменовал окончание (как говорят науковеды, финализацию) Посткоперниканской революции. Затем на протяжении целого столетия астрономия в основном развивала и совершенствовала созданные революцией ресурсы. На этом пути еще до конца XVIII в. и в первые годы XIX в. было получено немало замечательных результатов. Была обнаружена атмосфера Венеры, открыт Уран, а затем и первые астероиды, составлены каталоги космических туманностей, многие из которых сегодня называют галактиками, и даже, хотя и в сильно условном смысле, предсказано существование черных дыр. В середине XIX в. астрономия вновь блеснула великолепными открытиями. В 1841 г. директор Берлинской обсерватории Иоганн Франц Энке вычислил массу Меркурия по возмущениям движения кометы, которая сейчас носит его имя. Тогда же было доказано, что орбита Меркурия поворачивается относительно Солнца, из-за чего эта планета описывает не замкнутый эллипс, а розетку. Скорость этого вращения очень невелика (за столетие меркурианский перигелий смещается всего на 575 угловых секунд), так что ее измерение продемонстрировало высокую точность телескопических наблюдений.

В принципе, в аномальном поведении ближайшей к Солнцу планеты не было ничего особенного. Из уравнений ньютоновской механики следует, что строго по эллипсу может двигаться лишь одиночная планета, не имеющая соседей. Однако на Меркурий влияют своим притяжением не только Солнце, но и прочие планеты, главным образом гигант Юпитер. В 1859 г. директор Парижской обсерватории Урбен Жан Жозеф Леверье доказал, что под действием гравитации Юпитера, Венеры, Земли и Марса и с учетом прецессии земной оси наблюдаемая с Земли орбита Меркурия должна поворачиваться чуть медленней, чем это происходит в действительности. Расхождение было ничтожным, около 2/3 угловой минуты в столетие, но объяснить его никак не получалось. Причину дополнительного поворота обнаружил в конце 1915 г. Альберт Эйнштейн — на базе только что созданной общей теории относительности (ОТО). А пока что блестящие вычисления Леверье убедительно демонстрировали силу математических методов небесной механики.

Самым известным достижением посткоперниканской астрономии стало теоретическое предсказание и последующее наблюдение восьмой планеты Солнечной системы. Первым ее траекторию и даже массу в 1845 г. на основе анализа наблюдаемых аномалий движения Урана вычислил Кембриджский математик Джон Адамс. Годом позже это независимо сделал и Леверье, который тогда преподавал в Политехнической школе. Он поделился своими выводами с ассистентом Берлинской обсерватории Иоганном Галле. Галле с разрешения Энке сразу же приступил к наблюдениям и в ночь с 23 на 24 сентября 1846 г. обнаружил новую планету, которую Леверье назвал Нептуном. Правда, уже через год выяснилось, что 10 мая 1795 г. Нептун наблюдал французский астроном Мишель Лаланд, который, к несчастью для себя, счел его малоинтересной тусклой звездой (более того, не исключено, что его в 1612 г. и 1613 г. видел и Галилей). Очень важно, что Нептун был замечен не в ходе рутинных телескопических наблюдений (именно так 13 марта 1781 г. великий британский астроном немецкого происхождения Уильям — до переезда в Британию Фридрих Вильгельм — Гершель обнаружил Уран), а, как часто говорят, открыт на кончике пера. Это стало международной сенсацией, которая как нельзя более убедительно продемонстрировала мощь астрономической науки.


Рекомендуем почитать
Загадки космоса. Планеты и экзопланеты

В этой книге речь идет об удивительных небесных телах – экзопланетах. Эти планеты вращаются не вокруг нашего Солнца, а вокруг других звезд. Разнообразие видов экзопланет поражает воображение: горячие газовые гиганты и холодные мини-копии Нептуна, миры-океаны и суперземли, обращающиеся вокруг своих звезд или свободно плывущие в космическом пространстве. Что собой представляют эти миры? Как ученым удалось их обнаружить? И, конечно, есть ли там жизнь? Добро пожаловать в захватывающее путешествие! Для широкого круга читателей.


Всего шесть чисел. Главные силы, формирующие Вселенную

В книге всемирно известного астрофизика, члена Королевского астрономического общества сэра Мартина Риса описываются фундаментальные силы, управляющие нашей Вселенной. Автор утверждает, что расширяющаяся Вселенная может быть определена всего шестью числами: N, e, Ω, l, Q, D, каждое из которых играет особую и решающую роль в ее эволюции, а вместе они определяют ее развитие и потенциал возможностей. Два из них связаны с основными силами; другие два определяют размер и общую структуру Вселенной и показывают, будет ли она существовать вечно; еще два говорят о свойствах самой Вселенной.


Прорыв за край мира

Последние несколько лет стали эпохой триумфа теории космологической инфляции, объясняющей происхождение Вселенной. Эта теория зародилась в начале 1980-х годов на уровне идей, моделей и сценариев, давших ряд четких проверяемых предсказаний. Сейчас благодаря прецизионным измерениям реликтового излучения, цифровым обзорам неба и другим наблюдениям эти предсказания подтверждаются одно за другим. В книге отражено развитие главных идей космологии на протяжении последних ста лет, при этом главное внимание уделено теории космологической инфляции.


Записки наблюдателя туманных объектов

«Записки наблюдателя туманных объектов» — совокупность статеек, которая в конце 2009 года выросла в отдельную книгу. Насколько она удалась — судить вам. К работе над ними я приступил после 15 лет наблюдения звездного неба в пятнадцатисантиметровый телескоп. В «Записках» я не пытался описать как можно больше сокровищ звездного неба, а просто хотел поделиться своими впечатлениями и радостью от их созерцания. На данной странице можно найти и отдельные статьи в том виде, в каком они были опубликованы в журнале «Небосвод».


Находки в Сибири

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Кипящая Ио

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни.


Вселенная в вопросах и ответах. Задачи и тесты по астрономии и космонавтике

В книге собраны 181 задача, 50 вопросов и 319 тестов с ответами и решениями. Материал в основном новый, но включает наиболее удачные задания из предыдущих изданий. В целом это не очень сложные, но «креативные» задачи, раскрывающие разные стороны современной астрономии и космонавтики и требующие творческого мышления и понимания предмета. Основой для некоторых вопросов стали литературные произведения, в том числе научно-фантастические повести братьев Стругацких. Работа с этой книгой делает знания по астрономии и космонавтике активными, что важно для будущих ученых и инженеров, а также преподавателей физики и астрономии.


Это мой конёк. Наука запоминания и забывания

Почему мы помним? Как мы забываем? И что же такое память, в конце концов? Отвечая на эти и другие вопросы, умная и веселая книга «Это мой конёк» позволяет нам по-новому увидеть одну из самых поразительных человеческих способностей. Две сестры из Норвегии, нейропсихолог и известная писательница, искусно вплетают в повествование историю, науку и собственные исследования, открывая перед читателем захватывающую панораму понимания памяти — от эпохи Возрождения и открытия гиппокампа, напоминающего по форме морского конька, до нашего времени. В свете самых актуальных научных идей XXI века показана роль различных отделов мозга, причины забывания детских воспоминаний и трудностей с памятью при стрессе и депрессивных состояниях.


Срок времени

Карло Ровелли – итальянский физик-теоретик, специалист в области квантовой гравитации, автор нескольких научно-популярных книг. В “Сроке времени” он предлагает неожиданный взгляд на такой, казалось бы, привычный нам всем феномен, как время. Время, утверждает он, не универсальная истина, а иллюзия, это просто наше ощущение последовательности событий, их причинно-следственных связей. Время есть форма нашего взаимодействия с миром. Тайна времени, вероятно, в большей степени связана с тем, что такое мы сами, чем с тем, что такое космос.