Баллистическая теория Ритца и картина мироздания - [23]

Шрифт
Интервал

Таким образом, баллистическая модель и теория Ритца не только согласуются со всеми электрическими и магнитными эффектами, но и позволяют в рамках классической картины мира понять их природу. Сама идея влияния движения заряда на величину электрической силы и объяснение через это магнитных эффектов возникла уже очень давно. Задолго до Ритца (как он сам же замечает [8]) её высказал Гаусс и развил Вебер, ещё в середине XIX века построивший на её основе электродинамику, рассматривающую магнитные и индукционные силы как следствие изменения (при движении и ускорении зарядов) сил электрических [72, 106]. Причём электродинамика Ампера и Вебера долгое время принималась учёными и противопоставлялась теории Максвелла.

Но концепция Вебера была отвергнута, причём, по иронии судьбы, — тем самым фактом, из которого должна бы была проистекать. Дело в том, что Вебер был сторонником теории дальнодействия, то есть мгновенного распространения воздействий, без помощи какого-либо промежуточного агента. А формулы свои, описывающие влияние движения на величину электрической силы, он не вывел, а эмпирически подобрал, основываясь на опытах [72, 106]. А между тем, как было показано, и как утверждал Гаусс (учитель Вебера), их можно вывести строго, придерживаясь прямо противоположного принципа, — считая, что воздействие передаётся не мгновенно, а с задержкой, через некий промежуточный агент (реоны). Предположение же о мгновенной передаче воздействия с бесконечной скоростью реонов (c = ∞), как легко проверить, привело бы, напротив, к постоянной, не зависящей от движения зарядов величине силы. Так Ритц обосновал подход Вебера и Гаусса и тем самым завершил процесс сведения магнитных эффектов к электрическим, начатый ещё Ампером. Именно Ампер впервые понял, что магнетизм — это фикция, и магнит представляет собой лишь набор элементарных молекулярных круговых токов, то есть, в конечном счёте, — движение зарядов. Таким образом, правильнее говорить не о связи электрических и магнитных эффектов, а о том, что вторые — это лишь частное проявление первых. Интересно, что гипотезу Ампера об электрической природе магнитных сил, как следствия взаимодействия элементарных токов тел, выдвигали ещё Демокрит с Лукрецием, объяснявшие магнитное воздействие ударами микрочастиц (реонов § 4.19), источаемых магнитами и электроном (янтарём).

В том, что магнитное поле — это фикция, легко убедиться, рассмотрев два пучка электронов, летящих параллельно с одинаковой скоростью. По Максвеллу это движение зарядов создаст магнитное поле, отчего между пучками, кроме кулоновской силы отталкивания, возникнет ещё сила магнитного притяжения, как между двумя токами. Но если перейти в подвижную систему отсчёта, связанную с летящими электронами, магнитная сила исчезнет, хотя сила взаимодействия пучков по классическому принципу относительности должна остаться прежней. Свести концы с концами в теории Максвелла удаётся лишь посредством теории относительности, по которой исчезновение магнитного притяжения в точности компенсируется релятивистским снижением кулоновского отталкивания пучков [96]. Совсем как в опыте Майкельсона, где пытались объяснить отсутствие перемен при изменении скорости тем, что оно в точности компенсируется сокращением плеч интерферометра, пока не поняли, что справедлив принцип относительности (§ 1.9). Но, раз справедлив этот открытый Галилеем принцип, не проще ли считать, что и электрическая сила взаимодействия пучков не зависит от того, в какой системе она измерена, тогда как магнитная сила вообще не возникает? И действительно, электрическая сила по Ритцу, как видели, зависит не от абсолютной скорости зарядов в некой системе отсчёта, а лишь от их взаимной скорости по отношению друг к другу. Именно эта зависимость, доказывающая, что заряд сообщает свою скорость воздействиям, и воспринимается нами в форме магнитных эффектов.

Идея чисто электрической природы магнитных сил всегда лежала на поверхности, отчего многократно переоткрывалась и в наше время. Ведь любой знает, что магнитные силы порождаются движением зарядов, откуда один шаг до мысли, что изменение кулоновского взаимодействия зарядов от их движения и создаёт магнитные эффекты за счёт конечной световой скорости электрических воздействий и запаздывающих потенциалов. Не случайно, с этой идеей, высказанной ещё Гауссом, Вебером и развитой Ритцем, независимо выступали многие учёные, в том числе Н.К. Носков, В.М. Петров [96]. Кстати, В. Петров, рассматривая взаимодействие проводников, ещё в 2004 г. выдвинул ряд интересных идей, в том числе о неравномерном распределении движущихся электронов по металлу, что позволяет решить ряд затруднений теории Ритца, скажем при объяснении явлений индукции, самовоздействия тока электронов, а также формы закона Ампера и значения коэффициента в нём.

Следует заметить, что теории Вебера и Ритца приводят к закону взаимодействия токов, отличному от общепринятого. Так, считается, что магнитные силы всегда перпендикулярны элементам тока (Рис. 17). Но это нарушает принцип действия и противодействия, особенно если один ток идёт вдоль, а другой поперёк соединяющей их линии


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.