Баллистическая теория Ритца и картина мироздания - [21]

Шрифт
Интервал

, а их масса — m, то

p = mV.

Частота попаданий в площадку S, перпендикулярную потоку частиц, находится как

n = kVS,

где k — концентрация частиц в потоке, а V — скорость их потока. Отсюда

F = np = kV>2Sm.

Для электрона в потоке реонов (от неподвижного электрона) скорость частиц V=c, а S — площадь поперечного сечения электрона, откуда

F = np = kcSp = kc>2Sm.

С удалением от электрона концентрация k выстреленных им реонов убывает пропорционально квадрату расстояния (Рис. 11). Отсюда, как выяснили выше, и следует закон Кулона: сила F отталкивания электронов спадает, пропорциональна квадрату расстояния между ними (§ 1.4).


Рис. 11. Один электрон действует на другой через посредство выстреливаемых им реонов R, воздействие которых спадает вместе с их концентрацией k пропорционально квадрату расстояния.


Так теория Ритца объясняет силу электростатического взаимодействия зарядов. Ну а магнитные силы возникают, как известно, от движения электрических зарядов. Физики говорят, что в зависимости от движения зарядов их электрическое поле преобразуется в магнитное и наоборот (поэтому говорят об электромагнитном поле, считая электричество и магнетизм лишь различными его проявлениями). Но как происходит этот переход, почему его вызывает движение зарядов, и что вообще такое магнетизм, современная физика объяснить не может. Теория же Ритца даёт на это простой и ясный ответ.

Выше было показано, что два неподвижных заряда взаимодействуют с силой F= kc>2Sm. Теория Ритца предсказывает изменение этой силы при сближении зарядов. Если один заряд движется, закон Кулона оказывается не вполне точен, что связано с конечной скоростью света, реонов, переносящих электрическое воздействие. В самом деле, пусть электрон, испускающий реоны, покоится, а другой движется ему навстречу со скоростью v. В таком случае скорость потока V, с которой реоны ударяются об электрон, согласно классической механике, будет равна уже не c, но V=c΄=c+v. Соответственно вырастет и импульс, передаваемый реонами электрону и частота их ударов, а, в конечном счёте, и сила отталкивания одного электрона другим. Из-за увеличения скорости V встречного потока реонов от c до c΄=c+v получим F= k(c+v)>2Sm. Сила вырастет по сравнению с той, что испытывали бы покоящиеся заряды на том же удалении. Напротив, расхождение зарядов уменьшит эту силу. Именно это небольшое изменение силы электростатического взаимодействия и воспринимается нами как магнитное воздействие. Причину этих изменений поясняет баллистическая модель: броневик, расстреливающий неподвижную мишень, увеличивает свою огневую мощь, когда быстро едет навстречу цели (Рис. 12). Ведь при движении к мишени растёт частота ударов и скорость пуль, а значит и сила ударов по мишени: пули барабанят по мишени чаще и сильнее. Ещё заметней будет эффект для пулемёта, установленного на самолёте, скорость которого уже сравнима со скоростью пуль.


Рис. 12. Подобно огневой силе движущегося броневика, повышена сила F взаимодействия сближающихся со скоростью v зарядов за счёт выросшей скорости c'=c+v и частоты ударов реонов R.


Далее рассмотрим заряженную нить и возле неё в т. O заряд q. Сила отталкивания заряда от нити

F= qτ/2πε>0r,

где τ — линейная плотность заряда нити, r — расстояние от заряда до нити, а ε>0 — электрическая постоянная. Сила же взаимодействия заряда с малым участком нити M длиной dl, имеющим заряд τdl, даётся законом Кулона

F = qτdl/4πε>0OM>2.

Перпендикулярная нити составляющая этой силы выразится через углы φ и как

F= qτcos(φ)dφ/4πε>0r (Рис. 13).

Найдём, как изменится сила при движении заряда параллельно нити со скоростью v. По отношению к движущемуся заряду встречные реоны будут иметь скорость отличную от c за счёт векторного вычитания из c скорости v заряда. И направлена скорость реонов будет уже не вдоль MO, а вдоль M΄O (ту же природу имеет звёздная аберрация — отклонение световых лучей, вызванное движением Земли, § 1.9). Из треугольника скоростей OMM΄:

c΄= [c>2+v>2–2cvsin(φ)]>1/2

или, разлагая в ряд и считая v/c малым, получим

c΄≈ с[1–sin(φ)v/c+(v/c)>2cos>2(φ)/2].

Соответственно меняется и сила:

F΄=F(c΄/c)>2.

Но, поскольку сила меняет и направление ( действует вдоль ), то интересующая нас составляющая F изменится в несколько меньшей степени:

F΄= F(c΄/c) = [1–sin(φ)v/c+ (v/c)>2cos>2(φ)/2]cos(φ)dφqτ/4πε>0r.

Остаётся найти суммарную силу воздействия на заряд со стороны всех элементов нити, проинтегрировав F΄ в пределах φ от — π/2 до +π/2. В итоге, полная сила

Fу΄= (1+v>2/3c>2)qτ/2πε>0r= qτ/2πε>0r+v>2qτ/6πε>0rc>2.

Первое слагаемое — это сила взаимодействия нити с покоящимся зарядом, а второе — это прибавка к ней, возникшая за счёт движения. Итак, движение заряда со скоростью v вдоль нити вызывает рост силы отталкивания (или притяжения) на величину v>2qτ/6πε>0rc>2.

Рис. 13. Проекция F'>y силы отталкивания заряда элементом длины dl бесконечной заряженной нити меняется при движении заряда пропорционально скорости c' реонов относительно него.


Этот результат имеет весьма важные последствия. Рассмотрим два параллельных проводника с сонаправленными токами. Поскольку ток в металле создаётся движением электронов, заменим каждый проводник движущейся отрицательно заряженной нитью (Рис. 14). У первой нити линейная плотность заряда


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.