Авиация и космонавтика 2012 04 - [9]

Шрифт
Интервал

В 1961 г. испытания продолжились. В феврале провели повторный запуск ракеты на максимальную дальность, теперь уже успешный, траектория активного участка полета регистрировалась фотокамерами при помощи установленных на ракете двух ярких проблесковых огней.


Памятник погибшим ракетчикам на месте трагедии 24 октября 1960 г.


В марте «Титан» снова постигла неудача. Ракета запускалась из боевой шахты на базе Ванденберг, потеряла управление и была подорвана на 140-й секунде полета.

23 июня состоялся неудачный запуск «Титана I» с чисто инерциальной системой наведения в рамках разработки проекта «Титан II».

В июле прошел испытания комплект ложных целей для преодоления ПРО. Каждая цель имела собственный твердотопливный двигатель и имитировала полет боеголовки. Шесть целей запускались в момент отделения головной части и четыре – при ее входе в атмосферу.

В июле, после устранения неполадок, был проведен успешный запуск ракеты с инерциальной системой наведения.

Несмотря на определенные неудачи, американские специалисты считали ход испытаний вполне успешным. Радиоинерциальная система наведения продемонстрировала высокую надежность и точность работы. Она включалась автоматически после подъема «Титана» на высоту 20-30 м. Боевая ЭВМ «Афина», находящаяся в подземном бункере стартового комплекса, просчитывала траекторию полета и выдавала координаты прогнозируемой точки падения с точностью до 400 м. Радиокомандная часть системы начинала передавать на борт ракеты команды управления, основанные на данных ЭВМ и радиолокационного наблюдения за полетом. Эта часть системы наведения работала до момента выключения двигателя второй ступени.

На высоте 90000 м включалась инерциальная часть. Небольшие скоростные гироскопы начинали измерять угловое ускорение по всем трем осям и регулировали подачу гелия из баллона в головной части по системе трубопроводов, расположенных вокруг контейнера с боеголовкой, в четыре небольших сопла, расположенных по периферии основания головной части. После входа в плотные слои атмосферы работа этой системы прекращалась и боеголовка летела по инерции. Точность стрельбы составляла 2000 м.

В ходе летных испытаний конструкторы приняли решение отказаться от твердотопливных двигателей разделения ступеней. Это давало выигрыш в весе полезной нагрузки. Вместо них использовали «дармовой» газ от газогенератора привода турбонасоса ЖРД второй ступени. Выхлопные газы газогенератора направили в сопла, расположенные вокруг двигателя второй ступени. Как только проходила команда на запуск двигателя, первым начинал работать газогенератор, сопла создавали небольшую тягу и ступени плавно разделялись.

Всего, в ходе летных испытаний, было совершено 47 пусков ракеты: 34 успешных, 9 частично успешных и 4 неудачных.

Пока шли летные испытания, американцы начали строить боевые стартовые комплексы. Согласно первому проекту каждый комплекс должен был состоять из одного пункта управления и девяти пусковых установок шахтного типа. Но такая конфигурация представляла очень привлекательную цель. Удачное попадание в центр управления могло вывести из строя девять ракет и военные потребовали пересмотра проекта. Окончательный вариант комплекса, утвержденный в 1958 г., состоял из трех ракет и одного пункта управления.

Для более совершенной ракеты «Титан-ll» ВВС утвердили проект, в котором на одну шахту приходился один пункт управления. Эта ракета разрабатывалась с чисто инерциальной системой наведения и ей уже не требовалась радиостанция наведения.

В 1961 г. ракета «Титан I» была принята на вооружение под обозначением SM-68A. Организационно комплексы сводились в эскадрильи, по три комплекса в каждой. На каждое подразделение приходилось девять боевых и одна резервная ракета. Каждая ракета находилась в шахте глубиной 50 м и диаметром 12 м. Шахта оборудовалась специальным подъемником, с помощью которого стартовая установка и ракета поднималась на поверхность для запуска. Подъем почти стотонной ракеты занимал 10 мин. Рядом находились лифты для обслуживающего персонала и оборудования. К главной шахте прилегали две вспомогательные шахты с заправочным и контрольно-проверочным оборудованием. Обе вспомогательные шахты отстояли от ракетной на 12 м и соединялись с ней туннелями.

Кроме этого, под землей находились три складских шахты глубиной 22 м и диаметром 8 м, полусферическое помещение центра управления, имеющие радиус 15,5 м, полусферическое помещение для электростанции с радиусом 19 м и помещения для радиокомандной системы глубиной по 20 м и диаметром по 8 м. Подземная система могла выдерживать избыточное давление до 21 кг/м2 , что примерно соответствовало давлению при взрыве термоядерного заряда мощностью 10 Мт.

Для постройки одного комплекса (ракетной базы) было необходимо вырыть котлован объемом 535000 м3 , уложить в него 22000 т стальной арматуры и других металлоконструкций и залить все это 73400 кубометрами бетона. Первый комплекс построили на авиабазе ВВС Ванденберг, где на базе 395-й учебной эскадрильи 1-й дивизии управляемых ракет началось обучение личного состава 15-й воздушной армии, в состав которой вливались ракеты «Титан».


Еще от автора Журнал «Авиация и космонавтика»
Авиация и космонавтика 1995 05

Авиационно-исторический журнал, техническое обозрение. Совместное издание с "ТИ". Малая энциклопедия отечественных летательных аппаратов. Часть 1В данном издании невысокое качество фото и графических иллюстраций (как и у многих изданий начала 90-х).




Авиация и космонавтика 1996 01

>Авиационно-исторический журнал. Техническое обозрение. Оставлены только полные статьи. Не полностью вычитан.


Авиация и космонавтика 2011 03

Авиационно-исторический журнал, техническое обозрение.


Авиация и космонавтика 1994 01 + Авиационный сборник 1994 02

Авиационно-исторический журнал. Техническое обозрение. К сожалению исходник – картинки с разрешением 150 dpi.


Рекомендуем почитать
Говорит командир корабля. Вопросы, ответы и наблюдения опытного пилота

На страницах этой книги Патрик Смит, пилот гражданской авиации и автор популярного блога об авиапутешествиях, рассказывает неожиданные факты об авиации, отделяет правду от вымысла и отвечает на многие вопросы впечатлительных авиапассажиров: как летают самолеты, почему задерживают рейсы, чем опасны снег и лед для полета, что такое турбулентность, как выглядит рабочий график пилота и какие авиакомпании считаются самыми безопасными.На русском языке публикуется впервые.


Бомбардировщики Первой мировой войны

Бомбардировщики во Первой Мировой войне не имели такой славы как истребители, но влияние на последующее развитие авиации оказали не меньшее.


Асы люфтваффе. Пилоты Fw 190 на Западном фронте

Первую информацию о появлении в воздухе немецкого истребителя нового типа командование RAF почерпнуло из рапортов своих летчиков-истребителей. В сентябре 1941 г. многие пилоты стали докладывать о столкновениях с одномоторными самолетами, оснащенными двигателями воздушного охлаждения. Летчики ошибочно идентифицировали их как французские истребители Блок-151 или американские Кертисс «Хок-75». Привыкнув к преимуществу своих истребителей, англичане не могли поверить, что на вооружении люфтваффе может появится самолет лучший, чем истребители RAF.Сомнения окончательно рассеялись 13 октября 1941 г.


Несостоявшиеся «Авианосные» державы

Настоящая книга открывает серию изданий, объединенных в "Аналитическое приложение к справочнику "Боевые корабли мира . Сама структура справочного издания подразумевает краткое изложение материала, при этом большая часть интересной и зачастую уникальной информации остается за его рамками. Настоящее приложение призвано информационно дополнить и расширить данную тему. В "Портфеле заказов первой очереди редакции "Галея Принт" находятся подготовленные к изданию выпуски аналитического приложения, посвященные сверхмалым подводным лодкам, крейсерам ПВО, эволюции морского боя, созданию военных флотов основных морских держав в предверии Второй мировой войны и т.


История Авиации 2004 06

Авиационно-исторический журнал, техническое обозрение.


История Авиации 2004 03

Авиационно-исторический журнал, техническое обозрение.