M2F-3 на поверхности высохшего озера Роджерс, авиабаза Эдварде, 1970 г.
HL-10, на поверхности высохшего озера Роджерс, авиабаза Эдварде, 1968 г.
Х-24А, авиабаза Эдварде, 1967 г.
Х-24В, авиабаза Эдварде, 1972 г.
К моменту выпуска в СССР аванпроекта «Спирали» в США уже проводились полеты пилотируемых аппаратов M2-F1 (всего было выполнено 100 полетов за самолетом-буксировщиком с последующей отцепкой на высоте 3600 м), M2-F2 (16 полетов) и HL-10 (24 полета). Разумеется, результаты этих испытаний, включая анализ причин аварии при посадке аппарата M2-F2, были известны в ОКБ Микояна.
Но продолжим рассказ об орбитальном самолете «Спираль»… Носовое затупление выполнено в виде шестидесятиградусного сегмента с радиусом образующей сферы 1,5 м.
На атмосферном участке спуска с орбиты на углах атаки самолета в диапазоне 45-65 градусов сегмент располагается под углом ±10 градусов к потоку. С учетом лучистого теплообмена с менее нагретой верхней обшивкой это обеспечивает максимальную температуру на носовом затуплении 1400 градусов С. Уменьшение влияния колебаний угла атаки на повышение температуры достигается выбором необходимого запаса устойчивости и автоматики, ограничивающих колебания по углам атаки и скольжения в пределах +10 и ±4 градуса соответственно.
Нижняя поверхность самолета выполнена близкой к плоскости с малым радиусом скругления кромок.
Плоская нижняя поверхность и расчетный по температуре диапазон углов атаки на спуске 45-65 градусов обеспечивают получение максимального коэффициента подъемной силы, а, следовательно, минимальную температуру поверхности. Интересная деталь: при расчете максимальных температур поверхности самолета на участке интенсивного торможения в атмосфере при спуске с орбиты не учитывались каталитические свойства поверхности и различия между ламинарным и турбулентным обтеканием набегающего потока – очевидно, по причине отсутствия надежных расчетных методик.
Большие градиенты температур сосредоточены на радиусном переходе между нижней и боковой поверхностями, где применением специальных конструкций исключается появление больших температурных напряжений и коробления. Боковые поверхности корпуса выполнены в виде плоскостей, установленных под значительным отрицательным углом встречи с потоком для уменьшения тепловых потоков внутрь фюзеляжа. Форма верхней поверхности выбрана из условия получения потребных внутренних объемов, при этом обеспечено хорошее обтекание корпуса самолета на дозвуке. На гиперзвуке верхняя поверхность находится в затененной (срывной) зоне, что обеспечивает низкие температуры ее поверхности (менее 500 градусов С).
Стреловидное крыло (55 градусов по передней кромке) самолета имеет V-образную форму. Консоли крыла (площадь каждой 33 м 2 ) с размещенными на них элевонами выполнены поворотными (отклоняющимися вверх) для исключения их прямого обтекания тепловым потоком при прохождении участка плазмообразо- вания. Угол подъема консолей, измеряемый от горизонтальной плоскости, мог варьироваться от 115 градусов (25 градусов «внутрь» от вертикального положения консолей) при старте на РН «Союз» для компактного размещения под головным обтекателем РН до промежуточных положений в 60-45 градусов (от горизонтали) на этапе интенсивного торможения (нагрева). Положение и форма консолей выбраны так, чтобы при спуске с орбиты самолет самобалансировался в расчетном по температуре диапазоне углов атаки (45-65 градусов) при гиперзвуковом качестве 0,8-0,9 и при обтекании самолета на этих углах атаки поток стекал с корпуса на крыло, а не набегал на его передние кромки. Это должно было обеспечить низкий уровень температур на консолях при оптимальных значениях гиперзвукового аэродинамического качества.
Одновременно положение консолей крыла 45 градусов обеспечивает необходимый запас боковой динамической устойчивости в связи с неэффективным вертикальным оперением (килем с рулем направления) на указанных режимах полета. Расчетная схема обтекания крыла и корпуса была подтверждена продувками масштабной модели в аэродинамических трубах ЦАГИ.
Силовая ферма фюзеляжа орбитального самолета
Ферма фюзепяжа Вид снизу
Ферма фюзепяжа Вид сверху
Чтобы улучшить посадочные характеристики, на последнем, атмосферном, участке спуска была предусмотрена перебалансировка аппарата на малые углы атаки с максимальным раскладыванием консолей в фиксированное крыльевое положение (до 30 градусов), при этом размах крыла достигал 7,4 м. Таким образом, благодаря выбранной аэродинамической компоновке, из общего размаха на стреловидные консоли крыла приходилось лишь 3,4 м, а остальная, большая часть несущей поверхности соотносилась с шириной фюзеляжа.
Хорошее обтекание самолета на дозвуковых скоростях позволило получить аэродинамическое качество К=4,5 и коэффициент подъемной силы 0,6-0,8, что при выбранной удельной нагрузке 190 кг/м2 обеспечивало посадочную скорость, не превышающую 250 км/час, как и у обычных скоростных самолетов. Путевую устойчивость обеспечивал киль (стреловидность по передней кромке 60 градусов), оснащенный рулем направления. Высота самолета при сложенном крыле составляла 2,5 м.