Атомы и электроны - [31]
Но и задолго до этого опыта Стюарта и Толмена не было недостатка в доказательствах того, что внутри металла имеются обыкновенные электроны. Одним из таких доказательств был так называемый «фотоэффект». Это явление, впервые открытое Генрихом Герцем (знаменитым изобретателем радиотелеграфа) и подробно исследованное многими другими физиками, заключается в том, что при освещении ультрафиолетовым (а в некоторых случаях и видимым) светом металлы становятся положительно заряженными. Внимательное изучение этого явления показало, что металл потому становится положительно заряженным, что с его поверхности светом вырываются отрицательно заряженные частицы. Дж. Дж. Томсон измерил отношение e/m для этих частиц по такому же способу, какой он применял раньше к катодным лучам, и получил такое же самое значение, как для электронов катодных лучей. Отсюда ясно, что частицы, вырывающиеся из металла при освещении ультрафиолетовым светом,- это есть те же электроны.
Другое, еще более эффективное доказательство существования электронов внутри металла заключается в явлении «термоэлектронной эмиссии», которое открыл Томас Алва Эдисон, изобретатель фонографа[ 11 ] и электрической лампочки. Особенно подробно исследовал это явление (уже в первом десятилетии этого века) английский физик О. У. Ричардсон. Оно заключается в следующем: если сильно нагреть какой-либо металл, то из его поверхности начинают самопроизвольно выскакивать наружу отрицательно заряженные частицы. Определение e/m для этих частиц по способу Томсона показало, что это электроны. Число таких электронов, выскакивающих из металла наружу, очень быстро увеличивается с возрастанием температуры металла. Объясняется это явление вот как: среди электронов, находящихся в металле, попадаются и такие, которые имеют достаточно большую скорость для того, чтобы, подойдя изнутри к поверхности металла, пробить эту поверхность и выскочить наружу. Для того чтобы проскочить через поверхность металла, электроны должны затратить работу; это видно из того, что если бы такая работа была не нужна, то все электроны, пришедшие к поверхности, могли бы выскочить наружу,- в действительности же это под силу только электронам, у которых достаточно большой запас энергии движения, В этом смысле электроны, сидящие в металле, похожи на пойманных рыбок, мечущихся во все стороны в ведре с водой; только тем рыбкам, которые движутся достаточно быстро, удается выпрыгнуть наружу, прочие же не смогут подпрыгнуть так высоко, чтобы перемахнуть через край ведра. В случае электронов, находящихся в металле, число тех, которые движутся достаточно быстро для того, чтобы суметь выскочить из металла наружу, очень быстро увеличивается при возрастании температуры; при обычных температурах оно настолько мало, что никакого «термоэлектронного испускания» не происходит, но стоит только раскалить металл, как число выскакивающих из него электронов станет очень большим й «термоэлектронный ток» станет вполне доступен измерению. В некотором смысле это явление очень похоже на испарение жидкости: при повышении температуры число молекул, движущихся настолько быстро, что они смогут преодолеть притяжение остальных молекул и выскочить из жидкости в ее пар, становится все больше и больше, а поэтому нагретая жидкость испаряется быстрее, чем холодная. Явление «термоэлектронного испускания» может поэтому быть названо «испарением электронов». В настоящее время это явление имеет огромное множество технических применений (особенно в радиотехнике - стоит только вспомнить об электронных лампах), и с ним хорошо знаком каждый радиолюбитель.
* * *
Все вышеизложенное не оставляет никакого сомнения в правильности гениальной догадки Крукса о том, что электроны катодных лучей являются составной частью всех химических атомов. Но исследование катодных лучей привело не только к открытию электронов - этих предсказанных Франклином «атомов электрического флюида»,- оно привело также и к другому весьма важному открытию, оказавшему огромное влияние на все дальнейшее развитие физики. Речь идет об открытии рентгеновских лучей.
В 90-х годах прошлого столетия очень многие физики изучали замечательные свойства катодных лучей. При этом делались интересные открытия. Так, например, немецкий физик Ленард открыл способ изучать катодные лучи вне разрядной трубки. Для этого он проделал в стеклянной стенке трубки «окошечко» для катодных лучей, т. е. отверстие, закрытое металлическим листиком, очень тоненьким, но все же способным выдерживать атмосферное давление. Через это окошечко он выпустил из трубки катодные лучи наружу и сумел их изучать в воздухе. Заметим, что воздух оказывается не очень «прозрачным» для катодных лучей: пробежав в воздухе несколько сантиметров, электроны останавливаются,- очевидно, вследствие столкновений с атомами газов, из которых состоит воздух.
Еще более -замечательное открытие суждено было сделать другому немецкому физику - мюнхенскому профессору Вильгельму Конраду Рентгену.
В ноябре 1895 года он совершенно случайно обнаружил, что, когда разрядная трубка, в которой от катода бегут катодные лучи, помещена в картонный футляр, экран, покрытый флюоресцирующим веществом, начинает ярко светиться при приближении к этой трубке. Отсюда Рентген заключил, что разрядная трубка испускает особые лучи, невидимые глазу, но свободно проходящие через футляр. Падая на экран, покрытый платиносинеродистым барием, они заставляют его светиться. В первое мгновение Рентген был готов думать, что эти лучи света суть лучи Ленарда, т. е. вырвавшиеся наружу катодные лучи, но он должен был сейчас же отбросить это предположение, потому что лучи Ленарда очень плохо проходили даже через воздух - нескольких сантиметров воздуха было вполне достаточно для того, чтобы их задержать и поглотить,- а эти лучи, наоборот, обладали совершенно удивительной проникающей способностью: они свободно проходили через две сложенные вместе колоды карт, через еловую доску, через человеческую руку и т. д. Исследовав ближе это замечательное явление, Рентген обнаружил, что лучи испускаются той частью стеклянной стенки разрядной трубки, куда падают электроны катодных лучей. Под влиянием ударов со стороны падающих электронов стекло стенки начинает испускать (наряду со своим видимым зеленовато-желтым свечением, о котором мы уже упоминали в первой главе) также и особые, невидимые лучи, которые распространяются во все стороны и обладают удивительной способностью проникать на сравнительно большую глубину в тела, непрозрачные для видимого света. Такие лучи Рентген назвал «лучами икс», но это название, впрочем, не привилось, и в настоящее время на русском и на немецком языке открытые Рентгеном лучи называются попросту рентгеновскими лучами (англичане и французы продолжают называть их «лучами икс»).
Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.
В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.
Издание представляет собой исследование восточной литературы, искусства, археологических находок, архитектурных памятников. Повествование о могуществе и исчезновении городов и царств шумеров, хеттов, ассирийцев, скифов, индийцев сопровождается черно-белыми и цветными фотоиллюстрациями. В конце издания представлена хронологическая таблица заселения Древнего Востока. Красиво изданная, богато иллюстрированная книга для среднего и старшего возраста. Цветные полностраничные репродукции и черно-белые в тексте на каждой странице. На переплете: фрагмент выкопанной в Уре мозаичной плиты «Шумерское войско в походе». Издание второе.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.
Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.Для школьников старших классов, студентов, преподавателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.