Атомы и электроны - [24]

Шрифт
Интервал

) больше массы молекулы кислорода (O>2). Совершенно такое же соотношение получается, если сравнивать кислород не с углекислым газом, а, например, с азотом или с аргоном. Высота, на которую нужно подняться, чтобы плотность уменьшилась вдвое, обратно пропорциональна массе молекулы данного газа. Например, масса молекулы гелия (состоящая только из одного атома Не) в 8 раз меньше массы молекулы кислорода. Поэтому, для того чтобы количество гелия в одном кубическом сантиметре уменьшилось вдвое, нужно подняться не на 5 км, как в случае кислорода, а на 40 км (т. е. в 8 раз выше).

Слой гуммигутовой эмульсии в 100 микрон - это, в сущности, такая же атмосфера, но только состоящая не из молекул кислорода или азота, а из зернышек гуммигута, которые уже достаточно велики, чтобы их можно было видеть в микроскоп. Вследствие большой массы этих зернышек (по сравнению с молекулами газа) уменьшение плотности с высотой происходит быстрее, чем в обыкновенной атмосфере, окружающей нашу Землю, а именно (в случае гуммигутовых зернышек с диаметром 0,21 микрона) плотность уменьшается вдвое при подъеме на 30 микрон. «Эмульсия,- говорит Перрен,- это атмосфера в миниатюре, тяготеющая к Земле. В масштабе такой атмосферы Альпы представлялись бы несколькими микронами, а отдельные холмы стали бы равны молекулам». Для нас всего важнее, что молекулы этой миниатюрной «атмосферы» - зернышки гуммигута - могут быть взвешены, а это позволяет вычислить и массы молекул обыкновенного газа. Так Перрен сумел сделать то, что казалось совершенно невозможным,- взвесить молекулы и атомы.

Проделаем этот нехитрый расчет. Высота, на которой плотность кислорода уменьшается вдвое,- 5 км. Высота, на .которой плотность гуммигута уменьшается вдвое,- 30 микрон. 5 км в 165 миллионов раз больше, чем 30 микрон. Значит, масса гуммигутового зернышка с диаметром в 0,21 микрона превышает массу кислородной молекулы в 165 миллионов раз.

Сколько же весит такой гуммигутовый шарик? Это нетрудно рассчитать, если измерить предварительно, сколько весит кубический сантиметр гуммигута. При этом расчете не следует забывать, что в опытах Перрена зернышки гуммигута находились в воде, а значит, по закону Архимеда, каждый кубический сантиметр гуммигута терял в весе ровно столько, сколько весит кубический сантиметр воды, т. е. 1 грамм. Значит, каждый кубический сантиметр гуммигута в воде весил на один грамм меньше, чем в воздухе. В результате всех расчетов (которые мы пропускаем) получается, что масса зернышка (с поправкой на закон Архимеда) равна 0, 000 000 000 000 01 г.

И это зернышко в 165 миллионов раз превосходит по массе молекулу кислорода. Значит, молекула кислорода весит 0,000 000 000 000 000 000 000 05 г.

А так как масса молекулы кислорода в 32 раза больше массы атома водорода, то масса атома водорода - этого самого легкого из всех атомов – равна 0,000 000 000 000 000 000 000 0016 г.

В грамме водорода содержится, следовательно, 600 000 000 000 000 000 000 000 атомов.

Эти цифры, найденные Перреном, позволили связать употребительную единицу атомной массы - массу атома водорода - с граммом. Масса атома водорода, выраженная в граммах, получается настолько малой, что ее никак невозможно себе представить,- тем не менее ее удалось определить. Атом был взвешен. Важнейшая задача атомной физики была разрешена.

Немыслимо все время писать в виде десятичных дробей все эти ничтожно малые цифры. Поэтому физики придумали иной, более короткий способ их написания. Вместо того, чтобы писать 0,1, пишут 10>-1, вместо того, чтобы писать 0,01, пишут 10>-2, вместо 0,001 пишут 10>-3, вместо 0,0001 пишут 10>-4 и т. д., и т. д. Поэтому можно сказать, что масса атома водорода[ 10 ] в граммах есть произведение числа 1,6 на число 10>-24, или, короче, масса атома водорода = 1,6-10>-24 г.

Таким образом, вместо 100 пишут 10>2, вместо 1000 пишут 10>3, вместо 10000 пишут 10>4 и вообще вместо единицы c n нулями пишут 10>n. Поэтому число атомов водорода в одном грамме = 6 *10>23.

Вот какой результат получил Перрен, изучая распределение зернышек в гуммигутовой эмульсии в зависимости от высоты. Но всего любопытнее то обстоятельство, что точно такой же результат был выведен с помощью тех же гуммигутовых шариков, но совершенно иным путем, о котором мы также скажем несколько слов.

Броуновское движение в гуммигутовой эмульсии совершается необыкновенно быстро. Нет никакой возможности проследить за движением отдельного гуммигутового зернышка. Поэтому Перрен и не пытался этого делать, а поступил следующим образом: он отмечал на чертеже положение гуммигутового зернышка через определенные промежутки времени, например через каждые 30 секунд, и полученные точки соединял прямыми линиями (хотя на самом деле гуммигутовое зернышко за это время двигалось не по прямой линии, а также по причудливой ломаной кривой). Полученные рисунки дают возможность судить о беспорядочности и хаотичности броуновского движения вообще. Но Перрен снимал эти рисунки не только для того, чтобы получить наглядную иллюстрацию к броуновскому движению. Его интересовала количественная сторона дела. Знаменитый Альберт Эйнштейн, бывший тогда еще молодым человеком, написал (в 1905-1906 годах) замечательные работы, в которых он математически вывел формулу, определяющую для заданного промежутка времени среднее смещение гуммигутового зернышка относительно его первоначального положения в жидкости. Мы не станем здесь приводить эту формулу; заметим только, что в эту формулу входит величина, равная числу атомов водорода в одном грамме. Поэтому, сопоставляя формулу Эйнштейна с рисунками Перрена, определяющими перемещение частицы за каждые 30 секунд, можно вычислить эту величину. Так и сделал Перрен, и у него получилось, что число атомов водорода в одном грамме равно 6*10


Еще от автора Матвей Петрович Бронштейн
Занимательная квантовая физика

Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.


Солнечное вещество

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской

Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.


Рекомендуем почитать
Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Приглашение в теорию чисел

Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.


Многоликий солитон

Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.Для школьников старших классов, студентов, преподавателей.


История свечи

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Приключения Мистера Томпкинса

В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.