Астрономия Древнего Египта - [13]
2. Изменения продолжительности дня и ночи из месяца в месяц описываются в ряде текстов линейной схемой. В течение первых шести месяцев продолжительность дня (или ночи) возрастает линейно с постоянной разностью от наименьшей величины в день зимнего (летнего) солнцестояния до наибольшей в день летнего (зимнего) солнцестояния, а в течение следующих шести месяцев уменьшается линейно до первоначальной величины. Сохранились таблицы, в которых приведены месячные (или полумесячные) значения продолжительности дня и ночи, построенные согласно этой схеме. Самые ранние таблицы этого типа восходят ко времени Рамессидов (EAT, I, с. 119—120), другие — к Позднему периоду (EAT, III, с. 46). Эти таблицы служили, по-видимому, для построения месячных шкал водяных и солнечных часов. Схемы линейного изменения длины дня и ночи имеют, возможно, вавилонское происхождение, но отражают также влияние местной традиции. Используемые в них отношения М/т отвечают египетским, а не вавилонским определениям длины дня и ночи.
3. Со временем утверждается новое представление о ночи как о промежутке, границы которого определяет заход и восход Солнца. Самое раннее свидетельство об этой идее дают теневые часы эпохи Тутмоса III. Она засвидетельствована также в конструкциях теневых часов с наклонными шкалами, в которых длина дня от восхода до захода разбита на 12 часовых интервалов, а также в схемах линейного изменения длины дня и ночи, где день и ночь содержат неодинаковое число часов, составляющих в сумме 24 часа (EAT, I, с. 119—120; Pogo, 1936; Schott, 1950). Введение новой точки отсчета по Солнцу при определении дня и ночи в соединении с традиционной схемой их 12-часового деления приводило к понятию «сезонных часов» (1/12 части интервала от восхода до захода Солнца), принятого позднее в эллинистической астрономии.
4. Параллельно возникает представление о неизменных часовых интервалах (в эллинистической астрономии их называли «равноденственными», так как они равнялись 1/12 дня или ночи в дни равноденствий), не меняющихся в течение суток или сезонно. Их величина определяется как 1/24 суток, включающих одновременно день и ночь. В основе «равного часа» лежит представление о неизменности величины суток. Впервые подобное деление встречается в упомянутом выше астрономическом папирусе эпохи Рамессидов (EAT, I, с. 119—120; Cerny, 1943), содержащем таблицу продолжительности дня и ночи в часах для различных месяцев схематического календаря. Введение подобной равномерной шкалы, по мнению О. Нейгебауэра, связано с развитием водяных часов, при помощи которых можно измерять любые интервалы на протяжении суток. Несомненно, однако, что здесь происходит также качественный скачок в мышлении. Подразделение суток на 24 равные части — это математическая операция, произведенная над математическим (а не над реальным) отрезком, относительно которого известно, что он не меняется с течением времени. Полученная благодаря этой операции единица носит математический характер. Не удивительно поэтому, что она оказалась полезной позднее при возникновении античной математической астрономии.
Планеты
Наблюдения планет не играли существенной роли в Древнем Египте. Единственное свидетельство о подобных наблюдениях содержится в трудах Аристотеля (О небе, II, 12, 292а), где сообщается о получивших известность в Греции египетских наблюдениях соединений планет друг с другом, Луной и звездами (Waerden, 1974, с. 37). Это сообщение, однако, относится к Позднему периоду и не подтверждается другими источниками. Птолемей в «Альмагесте» не приводит ни одного египетского наблюдения, выполненного ранее греко-римской эпохи.
Самый ранний известный древнеегипетский список планет обнаружен на потолке гробницы Сенмута (см. вклейку). Он включает символические изображения четырех планет кроме Марса. Впервые Марс упомянут среди других астрономических надписей на потолке гробницы Сети I и Рамсеса II (XIII в. до н. э.). Можно думать, однако, что планеты в Египте были известны и в более раннее время. Так, термин «утренняя звезда», применявшийся в поздних текстах для обозначения Венеры, встречается уже в «Текстах пирамид» (Briggs, 1952; Faulkner, 1966). На одной гробнице времен XI династии можно прочесть название Юпитера (EAT, III, с 8—9, 177). Регулярные наблюдения звезд, производившиеся создателями диагональных календарей на рубеже III—II тыс. до н. э., неизбежно должны были привести к открытию планет. Неудивительно поэтому, что позднее их имена нередко встречаются в списках деканальных созвездий (EAT, III, с. 140, 148—149).
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.