Астрономия Древнего Египта - [11]

Шрифт
Интервал

Таким образом, на протяжении II тыс. до н. э. храмовыми служителями, ответственными за проведение ночных служб, было создано три метода для измерения ночных часов по наблюдениям гелиакических восходов, кульминаций

и прохождений через вертикалы, близкие к небесному меридиану, особо выбранных звезд. Отличительной чертой всех этих методов является их низкая точность, достаточная, впрочем, для храмовых нужд, что не позволяет, однако, в настоящее время идентифицировать используемые в них созвездия. В различных храмах, по-видимому, существовали разные традиции, развивавшиеся параллельно. Однако различие между ними кажется не столь существенным по сравнению с поразительным единством задач и методов их решения. Несмотря на прилагаемые усилия, проблема определения ночных часов по наблюдениям звезд не была решена в этот период. Каждый из вновь создаваемых методов функционировал недолго, а его замена не сопровождалась ростом знаний о движениях светил. Уровень используемых при этом теоретических представлений был крайне низок. Несколько больший прогресс заметен в соседней области, также связанной с необходимостью измерять время, — при конструировании водяных и солнечных часов.


Водяные и солнечные часы

Водяные часы. Самые древние египетские водяные часы (клепсидры) обнаружены в Карнаке и датируются эпохой Аменхотепа III (XIV в. до н. э.), но восходят к более раннему времени, так как зафиксированное на них отношение «самая короткая ночь — месяц египетского года» соответствует промежутку— 16404-1520 г. до н.э. (рис. 6). К этому же периоду восходит надпись в гробнице Аменемхета, сановника времен Аменхотепа I (XVI в. до н. э.), в которой, объясняется действие водяных часов и Аменемхет назван их изобретателем. До нас дошли также фрагменты египетских клепсидр и их уменьшенные копии, датируемые поздним, эллинистическим и римским периодами (Шолпо, 1939; EAT, III, с. 12—14, 42—44, 60—61; Borchardt, 1920, с. 8—10; Pogo, 1936, с. 403—407; Sloley, 1924; 1931).



Водяные часы применялись главным образом ночью в закрытых помещениях храмов, где нельзя было вести наблюдения звезд. Они имели различную форму (перевернутый усеченный конус, призматическую, цилиндрическую и др.) и измеряли объем вытекшей или втекающей воды. Инструменты первого типа перед началом измерений наполняли водой до предельного уровня, второго типа, напротив, полностью освобождали от воды. Отсчет времени производили по градуированным шкалам, нанесенным на внутреннюю поверхность часов. Клепсидра из Карнака имела 12 подобных шкал неодинаковой длины по одной на каждый месяц года (рис. 7). Они были разделены на 11 интервалов, позволяющих измерять время от конца 1-го часа до конца 12-го часа ночи. Исходной точкой для измерения, по-видимому, служил восход или кульминация определенной звезды, после чего отсчет часов производился независимо от звездных наблюдений. В других образцах клепсидр также имеется 12 шкал, разделенных, однако, на 12 интервалов для измерения 12 ночных часов. Принятое в них отношение наибольшей шкалы к наименьшей, т. е. фактически продолжительности наибольшей и наименьшей ночи, составляет 14 : 12. Длины промежуточных шкал изменяются по линейному закону между предельными значениями в дни солнцестояний. В ряде клепсидр распределение шкал по месяцам неравномерно. Это объясняется тем, что продолжительность ночи меняется незначительно вблизи дней солнцестояний, что позволяет для группы из трех месяцев использовать только одну шкалу. В этом случае 8 шкал из 12 группируются вокруг месяцев, на которые приходятся дни равноденствий (Pogo, 1936).



Водяные часы обеспечивают равномерное капание только в том случае, если диаметр сосуда, из которого вытекает вода, меняется с высотой параболически. Этот факт, конечно, не был известен изготовителям клепсидр, но они, возможно, понимали, что скорость капания зависит от уровня воды в сосуде. Расширяющаяся кверху форма карнакской клепсидры (и ряда других), возможно, представляет вариант решения этой проблемы. Сосуды цилиндрической и призматической формы дают большую погрешность относительно равномерной шкалы счета времени.

Со временем шкалы клепсидр устаревали, поскольку зафиксированное на них отношение «длина ночи — месяц» переставало удовлетворять действительности. При изготовлении новых клепсидр мастера копировали древние образцы, но указанное отношение изменяли в соответствие с данными своего времени (Borchardt, 1920. — Р. 10—26; Pogo, 1936; Sloley, 1924).

Солнечные часы. Клепсидры оказали влияние на развитие солнечных, или теневых, часов, применявшихся днем. Самый древний экземпляр солнечных часов, найденный в Египте, датируется эпохой Тутмоса III (XV в. до н. э.). Среди космологических текстов в кенотафе Сети I сохранилось, кроме того, описание конструкции, которая восходит, по-видимому, к более ранней стадии развития (EAT, I, с. 116—118; Parker, 1978, с. 713—714). Эти часы (рис. 8) состоят из горизонтального основания, на котором с краю и перпендикулярно к нему установлена горизонтальная же пластина, отбрасывающая тень на основание. В первой половине дня часы устанавливаются пластиной на восток, во второй — на запад. Горизонтальное основание разделено рисками на четыре неравные части, что позволяет в течение дня измерять 8 часовых интервалов. Часы Тутмоса III, в общем, того же типа, но они имеют на горизонтальном основании 5 делений для измерения 6 временных интервалов, т. е. 12 дневных часов. Часы с горизонтальной шкалой позволяют производить измерения до тех пор, пока тень от пластины находится в пределах шкалы. Вне этого промежутка имеется еще два интервала (утренний и вечерний) неопределенной длины, которые в тексте кенотафа Сети I, посвященном описанию теневых часов, оцениваются каждый по два часа, а в часах Тутмоса III, видимо, просто игнорируются. Этот недостаток устранен в конструкциях более позднего времени, где шкале, по которой производится отсчет времени, придан наклон.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.