Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - [82]

Шрифт
Интервал

Меня вдохновила работа когнитивного психолога Дэвида Румельхарта, который исследовал, каким образом детям удается быстро и правильно читать тексты. Он предлагал создать многослойную систему, в которой с уровня пикселов шел переход на семантический уровень, затем – на уровень предложений и грамматики, при этом происходило установление связи и передача сообщений. Каждый уровень выполнял только свою задачу и не знал, что делают остальные, чтобы получить корректный ответ, в котором, например, слово car отличается от слова cat.

Попытки смоделировать такую архитектуру в теории вероятностей не давали хорошего результата, пока я не обнаружил, что свойство сходимости появляется при древовидной структуре модулей. Сообщения можно передавать асинхронно, и в конечном итоге система даст корректный ответ. Затем мы перешли к полидеревьям, и, в конце концов, в 1995 г. я опубликовал статью о байесовских сетях.

Программировать эту архитектуру оказалось на удивление легко. Не требовалось управляющей программы для наблюдения за всеми элементами. Достаточно было указать, что будет происходить с переменной, когда она решит обновить информацию. Затем эта переменная отправляла сообщения соседям, которые в свою очередь отправляли сообщения своим соседям и т. д., после чего система давала корректный ответ.

Байесовские сети были приняты благодаря простоте программирования. Более того, они позволили запрограммировать зависимость между симптомами и болезнью и вычислить вероятность заболевания по наличию или отсутствию симптомов. При этом пользователю было понятно, почему система дает тот или иной результат и как ее модифицировать в случае изменившейся среды. Преимуществом была и модульность, характерная для способов, которые работают в природе.

В то время мы не понимали значение модульности. Оказалось, что она обеспечивается причинностью. Убрав причинно-следственные связи, мы теряем модульность, и вместе с ней прозрачность, возможность менять конфигурацию и другие приятные функции. К 1988 г., когда вышла моя книга о байесовских сетях, я уже хотел перейти к следующему шагу – моделированию причинности.

М. Ф.: Мы то и дело слышим, что «взаимосвязь и причинно-следственные отношения – это разные вещи» и что данные не дают информации о причинно-следственных связях. Правильно ли я понимаю, что байесовские сети также не позволяют ее получить?

Дж. П.: Нет. Байесовские сети работают в разных режимах в зависимости от того, как сконструированы.

М. Ф.: Идея этих сетей в обновлении вероятностей на основе новых данных ради получения более точной оценки. Вы нашли, как эффективно сделать это для большого числа вероятностей.

Дж. П.: Теорема Байеса применяется давно, сложность состояла в том, чтобы найти эффективный способ ее применения. Я считал, что для машинного обучения это просто необходимо. Можно получить данные и с помощью теоремы Байеса обновить систему для повышения ее производительности и улучшения параметров. Но это вероятностная, а не причинно-следственная схема, поэтому она имеет ограничения.

М. Ф.: Но она часто используется в системах распознавания речи и на различных устройствах.

Дж. П.: Мне доводилось слышать, что байесовские сети используются во всех сотовых телефонах для подавления помех при передаче, как и алгоритм распространения доверия. Именно так мы назвали алгоритм передачи сообщений. Якобы они есть в Siri, но проверить это невозможно, так как Apple держит свои разработки в секрете.

Байесовский вывод – один из основных компонентов машинного обучения, но постепенно произошел переход от байесовских сетей к менее прозрачному глубокому обучению. Система теперь самостоятельно регулирует параметры, а мы понятия не имеем, что за функция соединяет вход и выход. Работая с байесовскими сетями, мы не до конца осознавали важность модульности. При моделировании диагностической системы туда закладывается причинно-следственная связь между симптомами и заболеваниями. Но при этом возникает вопрос: как выглядит тот ингредиент, который мы называем «причинно-следственными связями»? Где он находится и как мы его обрабатываем?

М. Ф.: Байесовские сети стали популярными в computer science благодаря вашей книге. Но вы еще до ее выхода хотели перейти к причинному анализу?

Дж. П.: Именно причинно-следственные связи привели меня к интуитивному озарению, которое породило байесовские сети. Теоретически можно обойтись без причинно-следственной связи. Все функции байесовской сети можно описать, используя чисто вероятностную терминологию. Но на практике оказалось, что структурирование сети с учетом причинности все сильно упрощает. Хотя мы и не понимали почему.

Теперь известно, что нужны были такие функциональные характеристики, как модульность, возможность перестройки структуры, переноса и многое другое. Все эти вещи обеспечиваются именно причинностью. Но при более детальном рассмотрении оказалось, что фраза «корреляция не подразумевает причинности» намного глубже, чем мы думали. Чтобы получить причинно-обусловленные выводы, нужны причинно-обусловленные предположения, которые невозможно взять из данных и вообще непонятно, как их выразить.


Еще от автора Мартин Форд
Технологии, которые изменят мир

Эта книга о квантах – людях, управляющих рынками с помощью сложнейших математических моделей. Такой захватывающей истории о фондовом рынке вы еще никогда не читали.У вас в руках – шедевр журналистики, не просто поиск причины экономического кризиса, но и захватывающая история амбиций и гордыни, и предупреждение о будущем Уолл-стрит и всей мировой экономики.На русском языке публикуется впервые.


Роботы наступают

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого.


Рекомендуем почитать
«И дольше века длится век…»

Николай Афанасьевич Сотников (1900–1978) прожил большую и творчески насыщенную жизнь. Издательский редактор, газетный журналист, редактор и киносценарист киностудии «Леннаучфильм», ответственный секретарь Совета по драматургии Союза писателей России – все эти должности обогатили творческий опыт писателя, расширили диапазон его творческих интересов. В жизни ему посчастливилось знать выдающихся деятелей литературы, искусства и науки, поведать о них современным читателям и зрителям.Данный мемориальный сборник представляет из себя как бы книги в одной книге: это документальные повествования о знаменитом французском шансонье Пьере Дегейтере, о династии дрессировщиков Дуровых, о выдающемся учёном Н.


Твин Пикс. Беседы создателя сериала Марка Фроста с главными героями, записанные журналистом Брэдом Дьюксом

К выходу самой громкой сериальной премьеры этого года! Спустя 25 лет Твин Пикс раскрывает секреты: история создания сериала из первых уст, эксклюзивные кадры, интервью с Дэвидом Линчем и исполнителями главных ролей сериала.Кто же все-таки убил Лору Палмер? Знали ли сами актеры ответ на этот вопрос? Что означает белая лошадь? Кто такой карлик? И что же все-таки в красной комнате?Эта книга – ключ от комнаты. Не красной, а той, где все герои сериала сидят и беседуют о самом главном. И вот на ваших глазах начинает формироваться история Твин Пикс.


Почему в России не Финляндия?

Речь в книге идет о том, что уровень развития страны и особенности жизни в ней определяются законами государства и его экономической и социальной политикой. На примере Финляндии показано, как за семь столетий жизни при разных законах возникла огромная разница между Россией и Финляндией. И это совершенно закономерно. Приведены примеры различий. Дана полезная информация о Финляндии. Есть информация для туристов.


Русская жизнь-цитаты-Июнь-2017

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Газета Завтра 1228 (24 2017)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О своем романе «Бремя страстей человеческих»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.