Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей - [8]
Обучать глубокие сети мы не умели, но проблему решил Джеффри Хинтон своей работой по быстрым алгоритмам обучения ограниченной машины Больцмана (restricted Boltzmann machine, RBM). В моей лаборатории велась работа над связанными с ней автокодировщиками, которые дали начало таким моделям, как генеративно-состязательные сети (generative adversarial networks). Благодаря им появилась возможность обучения более глубоких сетей.
М. Ф.: А что такое автокодировщик?
И. Б.: Это специальная архитектура, состоящая из двух частей: кодировщика и декодера. То, что кодировщик сжал – декодер восстанавливал, причем так, чтобы выход был максимально близок к оригиналу. Автокодировщики превращали входную необработанную информацию в более абстрактное представление, в котором проще было выделить семантический аспект. Затем декодер восстанавливал по этой высокоуровневой абстракции исходные данные. Это были первые работы по глубокому обучению.
Через несколько лет мы обнаружили, что для обучения глубоких сетей достаточно изменения нелинейности. Вместе с одним из моих студентов, который работал с нейробиологами, мы решили попробовать блоки линейной ректификации (rectified linear unit, ReLU). Это пример копирования работы человеческого мозга.
М. Ф.: И к каким результатам это привело?
И. Б.: Раньше для активации нейронных сетей использовали сигмоиду, но оказалось, что с функцией ReLU гораздо проще обучать глубокие сети с большим количеством уровней. Переход случился примерно в 2010 г. Появилась огромная база данных ImageNet, предназначенная для отработки и тестирования методов распознавания объектов на изображениях и машинного зрения. Чтобы заставить людей поверить в методы глубокого обучения, нужно было показать хорошие результаты на примере этой базы. Это смогла сделать группа Джеффри Хинтона, которая использовала в качестве основы работы Яна Лекуна, посвященные сверточным сетям. В 2012 г. эти новые архитектуры позволили значительно улучшить существующие методы. За пару лет на эти сети переключились все, кто занимался компьютерным зрением.
М. Ф.: То есть именно в этот момент началось настоящее глубокое обучение?
И. Б.: Нет, совокупность факторов, ускоривших глубокое обучение, целиком сложилась только к 2014 г.
М. Ф.: То есть к моменту, когда этим занялись не только университеты, но и такие компании, как Google, Facebook и Baidu?
И. Б.: Именно так. Процесс ускорения начался чуть раньше, примерно в 2010 г., благодаря таким компаниям, как Google, IBM и Microsoft, которые работали над нейронными сетями для распознавания речи. Эти нейронные сети к 2012 г. Google начала использовать на смартфонах Android. Тот факт, что одну и ту же технологию глубокого обучения смогли применить как для компьютерного зрения, так и для распознавания речи, оказался по-настоящему революционным. Это привлекло внимание к сфере ИИ.
М. Ф.: Удивляет ли вас тот факт, что нейронные сети, с которыми вы много лет назад начали работать, стали центральным элементом проектов в таких крупных компаниях, как Google и Facebook?
И. Б.: Конечно, изначально этого никто не ожидал. В области глубокого обучения был сделан ряд важных, удивительных открытий. Я уже упоминал, что распознавание речи появилось в 2010 г., а о компьютерном зрении стали говорить в 2012 г. Пару лет спустя начался прорыв в сфере машинного перевода, который в 2016 г. привел к появлению сервиса Google Translate. В этом же году началось активное развитие программы AlphaGo. Всего этого мы не ожидали. Помню, как в 2014 г. я просматривал результаты генерации подписей к изображениям и поражался тому, что компьютер смог это сделать. Если бы годом раньше меня спросили, реально ли подобное, я бы ответил «нет».
М. Ф.: Это действительно нечто потрясающее. Конечно, осечки иногда происходят, но в большинстве случаев мы имеем поразительно точный результат.
И. Б.: Осечки неизбежны! Системы пока не обучены на достаточном количестве данных, кроме того, требуется изрядно продвинуться в фундаментальных исследованиях, чтобы они действительно научились распознавать объекты на изображениях и понимать язык. Пока до этого далеко, но ведь даже современного уровня производительности мы изначально не ожидали.
М. Ф.: А как вы пришли к исследованиям в области ИИ?
И. Б.: В юности я активно читал научную фантастику. Подозреваю, что это могло на меня повлиять. Именно оттуда я узнал об ИИ и трех законах робототехники Азимова, и у меня появилось желание изучать физику и математику. А чуть позже мы с братом заинтересовались компьютерами. На сэкономленные деньги мы приобрели компьютер Apple IIe, а затем Atari 800. Программного обеспечения тогда было мало, поэтому мы научились писать программы на языке BASIC.
Я так увлекся программированием, что занялся изучением вычислительной техники, а затем получил ученую степень в области computer science. В 1985 г., во время обучения в магистратуре, я начал читать статьи о первых нейронных сетях, в том числе работы Джеффри Хинтона. Это было любовью с первого взгляда. Я сразу понял, что хочу работать именно в этой сфере.
М. Ф.
Эта книга о квантах – людях, управляющих рынками с помощью сложнейших математических моделей. Такой захватывающей истории о фондовом рынке вы еще никогда не читали.У вас в руках – шедевр журналистики, не просто поиск причины экономического кризиса, но и захватывающая история амбиций и гордыни, и предупреждение о будущем Уолл-стрит и всей мировой экономики.На русском языке публикуется впервые.
Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого.
К выходу самой громкой сериальной премьеры этого года! Спустя 25 лет Твин Пикс раскрывает секреты: история создания сериала из первых уст, эксклюзивные кадры, интервью с Дэвидом Линчем и исполнителями главных ролей сериала.Кто же все-таки убил Лору Палмер? Знали ли сами актеры ответ на этот вопрос? Что означает белая лошадь? Кто такой карлик? И что же все-таки в красной комнате?Эта книга – ключ от комнаты. Не красной, а той, где все герои сериала сидят и беседуют о самом главном. И вот на ваших глазах начинает формироваться история Твин Пикс.
Речь в книге идет о том, что уровень развития страны и особенности жизни в ней определяются законами государства и его экономической и социальной политикой. На примере Финляндии показано, как за семь столетий жизни при разных законах возникла огромная разница между Россией и Финляндией. И это совершенно закономерно. Приведены примеры различий. Дана полезная информация о Финляндии. Есть информация для туристов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.