Аппаратные интерфейсы ПК - [8]
| 16 | Init# | Reset# | O | Сброс ПУ (низким уровнем) |
| 10 | Ack# | INTR# | I | Прерывание от ПУ |
| 11 | Busy | Wait# | I | Сигнал квитирования. Низкий уровень разрешает начало цикла (установку строба в низкий уровень), переход в высокий — разрешает завершение цикла (снятие строба) |
| 2-9 | Data[0:7] | AD[0:7] | I/O | Двунаправленная шина адреса/данных |
| 12 | PaperEnd | AckDataReq¹ | I | Используется по усмотрению разработчика периферии |
| 13 | Select | Xflag¹ | I | Используется по усмотрению разработчика периферии |
| 15 | Error# | DataAvail#¹ | I | Используется по усмотрению разработчика периферии |
¹ Сигналы действуют в последовательности согласования (см. ниже).
EPP-порт имеет расширенный набор регистров (табл. 1.5), который занимает в пространстве ввода-вывода 5–8 смежных байт.
Таблица 1.5. Регистры EPP-порта
| Имя регистра | Смещение | Режим | R/W | Описание |
|---|---|---|---|---|
| SPP Data Port | +0 | SPP/EPP | W | Регистр данных SPP |
| SPP Status Port | +1 | SPP/EPP | R | Регистр состояния SPP |
| SPP Control Port | +2 | SPP/EPP | W | Регистр управления SPP |
| EPP Address Port | +3 | EPP | R/W | Регистр адреса EPP. Чтение или запись в него генерирует связанный цикл чтения или записи адреса EPP |
| EPP Data Port | +4 | EPP | R/W | Регистр данных EPP. Чтение (запись) генерирует связанный цикл чтения (записи) данных EPP |
| Not Defined | +5…+7 | EPP | N/A | В некоторых контроллерах могут использоваться для 16-32-битных операций ввода-вывода |
В отличие от программно-управляемых режимов, описанных выше, внешние сигналы EPP-порта для каждого цикла обмена формируются аппаратно по одной операции записи или чтения в регистр порта. На рис. 1.3 приведена диаграмма цикла записи данных, иллюстрирующая внешний цикл обмена, вложенный в цикл записи системной шины процессора (иногда эти циклы называют связанными). Адресный цикл записи отличается от цикла данных только стробом внешнего интерфейса.
Рис. 1.3. Цикл записи данных EPP
Цикл записи данных состоит из следующих фаз.
1. Программа выполняет цикл вывода (>IOWR#) в порт 4 (>EPP Data Port).
2. Адаптер устанавливает сигнал >Write# (низкий уровень), и данные помещаются на выходную шину LPT-порта.
3. При низком уровне >Wait# устанавливается строб данных.
4. Порт ждет подтверждения от ПУ (перевода >Wait# в высокий уровень).
5. Снимается строб данных — внешний EPP-цикл завершается.
6. Завершается процессорный цикл вывода.
7. ПУ устанавливает низкий уровень >Wait#, указывая на возможность начала следующего цикла.
Пример адресного цикла чтения приведен на рис. 1.4. Цикл чтения данных отличается только применением другого стробирующего сигнала.
Рис. 1.4. Адресный цикл чтения EPP
Главной отличительной чертой EPP является выполнение внешней передачи во время одного процессорного цикла ввода-вывода. Это позволяет достигать высоких скоростей обмена (0,5–2 Мбайт/с). ПУ, подключенное к параллельному порту EPP, может работать со скоростью устройства, подключаемого через слот ISA.
Протокол блокированного квитирования (interlocked handshakes) позволяет автоматически настраиваться на скорость обмена, доступную и хосту, и ПУ. ПУ может регулировать длительность всех фаз обмена с помощью всего лишь одного сигнала >Wait#. Протокол автоматически подстраивается под длину кабеля — вносимые задержки приведут только к удлинению цикла. Поскольку кабели, соответствующие стандарту IEEE 1284 (см. выше), имеют одинаковые волновые свойства для разных линий, нарушения передачи, связанного с «состязаниями» сигналов, происходить не должно. При подключении сетевых адаптеров или внешних дисков к EPP-порту можно наблюдать непривычное явление: снижение производительности по мере удлинения интерфейсного кабеля.
Естественно, ПУ не должно «подвешивать» процессор на шинном цикле обмена. Это гарантирует механизм тайм-аутов PC, который принудительно завершает любой цикл обмена, длящийся более 15 мкс. В ряде реализаций EPP за тайм-аутом интерфейса следит сам адаптер — если ПУ не отвечает в течение определенного времени (5 мкс), цикл прекращается и в дополнительном (нестандартизованном) регистре состояния адаптера фиксируется ошибка.
Устройства с интерфейсом EPP, разработанные до принятия IEEE 1284, отличаются началом цикла: строб >DataStb# или >AddrStb# устанавливается независимо от состояния >WAIT#. Это означает, что ПУ не может задержать начало следующего цикла (хотя может растянуть его на требуемое время). Такая спецификация называется EPP 1.7 (предложена Xircom). Именно она применялась в контроллере 82360. Периферия, совместимая с IEEE 1284 EPP, будет нормально работать с контроллером EPP 1.7, но ПУ в стандарте EPP 1.7 может отказаться работать с контроллером EPP 1284.
С программной точки зрения контроллер EPP-порта выглядит просто (см. табл. 1.5). К трем регистрам стандартного порта, имеющим смещение 0, 1 и 2 относительно базового адреса порта, добавлены два регистра (>EPP Address Port и >EPP Data Port), чтение и запись в которые вызывает генерацию связанных внешних циклов.
Назначение регистров стандартного порта сохранено для совместимости EPP-порта с ПУ и ПО, рассчитанными на применение программно-управляемого обмена. Поскольку сигналы квитирования адаптером вырабатываются аппаратно, при записи в регистр управления CR биты 0, 1 и 3, соответствующие сигналам >Strobe#, >AutoFeed# и
Arduino — стандартный микроконтроллер, получивший широкое признание у инженеров, мастеров и преподавателей благодаря своей простоте, невысокой стоимости и большому разнообразию плат расширения. Платы расширения, подключаемые к основной плате Arduino, позволяют выходить в Интернет, управлять роботами и домашней автоматикой.Простые проекты на основе Arduino не вызывают сложностей в реализации. Но, вступив на территорию, не охваченную вводными руководствами, и увеличивая сложность проектов, вы быстро столкнетесь с проблемой нехватки знаний — врагом всех программистов.Эта книга задумана как продолжение бестселлера «Programming Arduino: Getting Started with Sketches».
Книга предназначена для самостоятельного изучения и применения на практике цифровых сигнальных процессоров DSP (Digital Signal Processor). На примере популярной микросхемы ADSP2181 фирмы Analog Devices рассмотрены устройство, архитектура и технические характеристики цифрового сигнального процессора. Приведено описание вычислительных блоков процессора, средств разработки программного обеспечения, языка программирования и системы команд процессора. Разработанные автором книги практические схемы с применением сигнального процессора, исходные тексты программ и схемы вспомогательных устройств, полезных при отладке программ для процессора помогут получить необходимые практические навыки, с помощью которых читатель легко освоит другие типы сигнальных процессоров.
Вы приобрели нетбук? И теперь хотите понять, чем он отличается от привычного всем ноутбука? Тогда вы держите в руках действительно необходимую книгу. Прочитав ее, вы не только освоите все тонкости, относящиеся к работе с нетбуками, но и узнаете о том, как работать на компьютере. Вы научитесь выбирать мобильный компьютер и аксессуары к нему, узнаете, как установить и настроить операционную систему, научитесь пользоваться пакетом Microsoft Office, выясните, какие программы следует иметь на жестком диске, как защитить сам ноутбук и данные на нем, можно ли модернизировать нетбук и что делать в случае его поломки.
Книга посвящена вопросам ремонта и обслуживания импульсных источников вторичного электропитания, которые используются практически во всем современном импортном и отечественном радиоэлектронном оборудовании.В книге рассмотрены теоретические вопросы проектирования и расчета импульсных источников питания, подробно описаны основы их схемотехники и принципы функционирования. Описываются различные способы стабилизации выходных напряжений, способы защиты источников питания от перегрузок во вторичных цепях, а также рассматриваются способы отключения источников питания при повышении выходных напряжений выше установленных пределов.В качестве примеров рассмотрены источники питания современных компьютеров AT и ATX форм-факторов.
Определение своего положения с помощью GPS навигатора, отдельного прибора, или устройства, встроенного в карманный компьютер или сотовый телефон, уже стало совершенно обычной вещью.Постепенно столь же привычным становится определение положения объекта с помощью систем телематики на основе GPS/GSM/GPRS, когда на мониторе компьютера или экранчике сотового телефона можно увидеть участок карты с отметкой, где находится другой человек или его автомобиль.«GPS» — это первые буквы английских слов «Global Positioning System» — глобальная система местоопределения.
Здравствуйте, уважаемый читатель!Вас приветствует редакция нового, молодого, некоммерческого журнала «4PDA», на страницах которого мы постараемся рассказать о разнообразных мобильных устройствах, в первую очередь, о карманных компьютерах и коммуникаторах. Мы хотим популяризовать эти замечательные устройства, которые помогут вам организовать вашу работу и отдых, и поэтому, постараемся предоставить вам, самую свежую и достоверную информацию.Журнал задуман таким образом, чтобы стать интересным как для новичков, так и для опытных пользователей, которые смогут найти для себя что-то новое и интересное.Особенность журнала заключается в том, что журнал можно будет прочитать как на карманном компьютере, так и на привычном, настольном.