Альтернативные источники энергии и энергосбережение - [75]

Шрифт
Интервал

Для характеристики схем установки преобразователей можно выделить две основные схемы — сооружений, закрепляемых на морском дне, и сооружений, плавающих в толще воды и заякоренных к дну.

Родоначальником устройств первой группы по праву считают водяное колесо (рис. 5.14, а). В совершенствовании водяного колеса наблюдаются две основные тенденции. Одна — собственно улучшение показателей колеса (за счет оптимизации конструкции ферм, лопастей, механизмов передачи энергии, расположения по отношению к потоку, применения современных материалов и т. п.), другая — принципиальное изменение представлений о колесе.

Ленточное колесо (рис. 5.14, б) оказывается более компактным, требует меньше материалов, менее подвержено воздействию атмосферы. Подобное устройство может быть установлено в потоке на понтонах с таким расчетом, чтобы нижние лопасти входили в воду, а верхние оставались «сухими».



Рис. 5. 14.Эволюция водяного колеса:

>а — колесо-прототип; б — ленточное колесо на плавучем основании; в — ленточное колесо в толще потока; г — ленточное колесо со складными лопастями


Эффективность преобразования скоростного напора повышается за счет того, что сразу несколько лопастей оказываются под воздействием потока. Однако простое увеличение числа лопастей ленточного колеса не приведет к существенному увеличению момента на валах.

На базе ленточного колеса созданы устройства, полностью погружаемые в толщу потоков (рис. 5.14, в, г). Для таких устройств предлагается несколько способов уменьшения сопротивления движению ленты во время холостого хода, например:

♦ сооружение воздушной камеры над колесом;

♦ применение различных вариантов механизмов складывания лопастей.

Наибольшие надежды гидроэнергетики, занимающиеся разработкой преобразователей энергетики океанских течений, связывают с агрегатами, с помощью которых могут быть получены значительные единичные мощности.

В качестве вариантов таких устройств рассматриваются рабочее колесо в виде свободного пропеллера, пропеллера в насадке, водяной аналог турбины Дарье, системы с управляемым крылом (рис. 5.15, а-в). Во всех этих конструкциях, так же как и у перспективных ветряных турбин, главный преобразующий элемент — крыловой профиль, обтекание которого потоком создает гидродинамическую силу, заставляющую турбины вращаться.



Рис. 5.15.Варианты схем перспективных турбин для ОГЭС:

>а — свободный ротор; б — ротор в насадке; в — ротор, устанавливаемый поперек потока


Наилучшими показателями обладает турбина, выполненная в виде рабочего колеса с горизонтальной осью в насадке. Это объясняется тем, что такое рабочее колесо меньше возмущает поток, не так сильно, как свободное, вовлекая жидкость во вращательное движение.

Насадок как бы отделяет возмущенную часть потока от невозмущенной и в то же время обеспечивает некоторую концентрацию энергии. Форму насадка выбирают из такого расчета, чтобы обеспечить плавное безотрывное течение потока на подходе к турбине, сделать всю систему устойчивой на потоке, максимально снизить завихренность потока на выходе из нее.

Увеличения мощности одного такого агрегата можно достигнуть за счет удлинения крыла. По сравнению с ветряными преобразователями океанские турбины в этом плане имеют преимущество: критический размер крыла, при котором в нем достигается предел прочности материалов для такой турбины выше.

Но есть ограничения и в воде: при слишком большой длине крыла на смену изгибающим моментам, создаваемым под воздействием силы тяжести, приходят моменты, создаваемые силой давления потока.

Другое ограничение диаметра рабочего колеса связано с технологическими трудностями при постройке и установке столь громоздких сооружений в океане. Специалисты сходятся во мнении, что диаметр турбин в насадках вряд ли превысит 200 м (по габаритам подобное сооружение напоминает крытый стадион на 20 тысяч зрителей). Накопленный к настоящему времени опыт строительства эксплуатационных платформ для добычи нефти и газа водоизмещением в сотни тысяч тонн показывает, что такие объекты могут быть созданы.

Объемный насос. Рассмотрим преобразователи энергии потоков, относящиеся по нашей классификации ко второй группе, и, прежде всего, устройства типа объемного насоса. На рис. 5.16 изображена одна из схем такого устройства, в основе которого — неподвижно закрепленное в потоке сопло Вентури.



Рис. 5.16.Схема объемного насоса


В пережатом сечении сопла из-за увеличения скорости жидкости происходит падение статического давления, которое может быть использовано, например, для засасывания воздуха с поверхности.

В выходном сечении уже сжатый воздух вытесняется из потока в напорную камеру, откуда поступает в воздуховод турбины, соединенной с электрогенератором. При умеренных степенях пережатия потока работа такого устройства может быть описана с помощью уравнения Бернулли.

Производительность такого насоса зависит от расхода жидкости через сечение насоса и может быть доведена примерно до 20 % объемного расхода. Эжекционные свойства сильно зависят от способа ввода в поток подсасываемого газа.

Перечень различных вариантов преобразователей можно продолжить, но важно отметить, что со временем могут быть открыты как более эффективные способы преобразования энергии потоков в океане, так и новые гидродинамические явления, которые потребуют принципиально новых разработок.


Рекомендуем почитать
Юный техник, 2014 № 04

Популярный детский и юношеский журнал.


Юный техник, 2014 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.