Алгоритмы для жизни: Простые способы принимать верные решения - [85]
Подход Лапласа имеет глубокую подоплеку: когда мы хотим знать что-то о комплексной величине, мы можем оценить ее значение путем выборки из нее. Это именно тот метод расчетов, который демонстрируется в его работе над правилом Байеса. В самом деле, несколько человек в точности воспроизвели предложенный Лапласом эксперимент, подтвердив, что этим способом рассчитать значение числа π возможно – хотя и не слишком эффективно[29].
Бросание тысячи иголок на лист бумаги может показаться кому-то интересным занятием, но для того, чтобы сделать из «пробника» практический метод, потребовались компьютерные технологии. Раньше, когда математики и физики пытались использовать случайность для решения задач, они должны были скрупулезно проводить расчеты вручную, так что трудно было генерировать достаточное количество выборочных проб, чтобы получить точные результаты. Компьютеры же – в частности, компьютер, разработанный в Лос-Аламосе во время Второй мировой войны, – определили исход дела.
Станислав (Стэн) Улам был одним из математиков, принимавших участие в разработке атомной бомбы. Выросший в Польше, он переехал в США в 1939 году и в 1943-м вошел в Манхэттенский проект. После непродолжительного пребывания в научных кругах он вернулся в Лос-Аламос в 1946 году и приступил к работе над созданием ядерного оружия. Но он был болен – заразился энцефалитом, и ему сделали срочную операцию на головном мозге. Едва оправившись от болезни, он начал беспокоиться, удалось ли ему сохранить математические способности.
В процессе выздоровления Улам много играл в карты, в частности раскладывал пасьянс (известный как «Клондайк»). Как знает всякий любитель пасьянсов, некоторые перетасовки колоды делают игру заведомо проигрышной. И в процессе игры Улам не раз задавался вопросом: какова вероятность, что перетасовка колоды приведет к выигрышу в игре?
В такой игре, как пасьянс, попытки спрогнозировать ход игры через пространство вероятностей обречены на провал. Стоит только перевернуть первую карту – и вот уже 52 возможных варианта развития игры; переверните следующую – и вот уже 51 вариант для каждой следующей карты. Таким образом, мы уже вовлечены в тысячи возможных игр еще до того, как начали играть. Фрэнсис Скотт Фитцджеральд однажды сказал: «Лучшее свидетельство высокого интеллекта – умение одновременно удерживать в уме две противоположные идеи, не теряя при этом способности функционировать». Это может быть правдой, но никакой высококлассный интеллект – ни человеческий, ни чей-либо еще – не сможет единовременно удерживать в уме миллионы миллиардов возможных раскладов колоды и надеяться на функционирование.
После попыток произвести некоторые сложные комбинаторные расчеты Улам бросил это дело и нашел другой подход, прекрасный в своей простоте: всего лишь играть в эту игру.
Я заметил, что гораздо практичнее просто [пытаться]… переворачивать карты или экспериментировать с процессом до тех пор, пока не обнаружу успешную комбинацию, чем пытаться вычислить все комбинаторные вероятности, экспоненциально растущее количество которых настолько велико, что, за исключением самых элементарных случаев, нет никакой возможности рассчитать их. Это удивительно для ума и, будучи не слишком унизительным, дает человеку ощущение скромности границ рационального или традиционного мышления. В достаточно сложной задаче фактическая выборка лучше, чем исследование всех цепочек вероятностей.
Обратите внимание: говоря «лучше», он вовсе не имеет в виду, что метод выборки даст вам более точные ответы, чем исчерпывающий анализ: всегда будут какие-то ошибки, связанные с процессом выборки, хотя вы можете уменьшить их количество, определяя выборку действительно случайным образом. Что он на самом деле подразумевает, говоря, что метод выборки лучше, так это то, что он дает вам все ответы в тех случаях, когда ничто другое не сможет вам их дать.
Вывод Улама – что метод выборки может преуспеть там, где анализ окажется бесполезен, – также имел решающее значение для решения некоторых сложных задач в ядерной физике, возникших в Лос-Аламосе. Ядерная реакция представляет собой разветвленный процесс, где вероятности множатся столь же неконтролируемо, как и в картах: одна частица делится на две, каждая из которых при столкновении с другими заставляет их в свою очередь так же делиться. Попытки точно рассчитать исход этого процесса, в котором взаимодействует великое множество частиц, обречены на провал. Но моделирование данного процесса, где каждое взаимодействие аналогично переворачиванию новой карты, открывает перед нами альтернативу.
Улам развивал эту идею дальше вместе с Джоном фон Нейманом и работал с Николасом Метрополисом, еще одним физиком из Манхэттенского проекта, над внедрением метода в компьютерную систему Лос-Аламоса. Метрополис назвал его подход – замену исчерпывающего анализа вероятностей симуляцией метода выборки – методом Монте-Карло, в честь казино Монте-Карло в Монако – места, столь же зависимого от капризов случая. Команда Лос-Аламоса могла использовать этот метод для решения ключевых задач ядерной физики. На сегодняшний день метод Монте-Карло является одним из краеугольных камней научных вычислений.
В монографии представлен аналитический обзор современной литературы, отражающий основные научные подходы к изучению родственников больных с аддиктивными расстройствами. В работе описываются особенности личностного и семейного функционирования различных категорий родственников больных, страдающих героиновой наркоманией, в сопоставлении с показателями их сверстников из нормативной выборки. Нормативная группа включала практически здоровых лиц, не имеющих выраженных нарушений социальной адаптации. Среди членов семьи нормативной группы отсутствовали лица, страдающие наркотической зависимостью, выраженными нервно-психическими или тяжелыми хроническими соматическими заболеваниями. Описан характер семейной и личностной дисфункциональности родственников наркозависимых, в частности, среди показателей семейного функционирования особое внимание уделено таким, как: нарушение семейного климата и уровня организации семьи, снижение показателей семейной социокультурной ориентации.
Именно страх рождает разочарования и застой в нашей жизни, лишая ее целей и радости. Вместо того чтобы искать способы ужиться со страхом или примириться с ним, стоит сделать выбор в пользу высших устремлений и бесстрашия. Мы можем изгнать страх из нашей жизни. Эта книга вдохновляет и заставляет задуматься, являясь как историей личной победы, так и пособием по внутренней трансформации. Для того, кто мечтает прийти к своему высшему «я», воплотить мечты, жить радостной и наполненной жизнью, страх ничего не решает!
Монографическое исследование на основе ролевой теории (теории ролей), современных концепций психологии, социологии, конфликтологии и юриспруденции представляет собой нестандартный анализ пенитенциарного процесса. В результате исследования выявляются универсальные факторы, которые приводят процесс исполнения наказания в виде лишения свободы в состояние криминального кризиса. Краеугольным камнем исследования стал вывод о том, что первопричиной конфликтов в местах лишения свободы с криминальной динамикой является наличие у сотрудников архаичной пенитенциарной парадигмы применения власти.
Успешность – это реальность или призрак? Ради неё многие люди готовы на всё! Но как её достичь? Использовать логику или довериться случаю? Эта книга поможет достичь подлинной успешности и счастья в жизни! Почему бы не начать её читать? Несомненно вы найдёте много полезного для своей жизни!
«Кокология» – модная японская игра, представляющая собой серию увлекательных психологических тестов, – входит сегодня в число популярнейших американских бестселлеров. «Кокология-2» предлагает читателям более 50 совершенно новых тестов, рассчитанных как на опытных кокологов, так и на новичков. Кокология – наука, занимающаяся изучением кокоро, что по-японски значит «ум» или «дух», – предлагает вам совершенно безобидные на первый взгляд вопросы вроде «Какая комната в вашем воображаемом доме самая чистая?», после чего выдает на основе полученных ответов описание вашего характера, ваших помыслов и предпочтений.
(О рецепте обретения “свободы” в фильме «Матрица») 1. Вот такое кино 2. Охота на человека и вопросы жизни и смерти 3. Математика и Божий Промысел 4. «Матричное» управление 5. О матрицах и эгрегорах 6. Освобождение — в Преображении содержания, а не в смене обличий.