Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [96]
1990 | Никого |
1986 | Серхио Батиста (Аргентина), Андреас Бреме (Западная Германия), 9 ноября |
1982 | Никого |
1978 | Рене ван де Керкхоф, Вилли ван де Керкхоф (Голландия), 16 сентября; Джонни Реп, Ян Йонгблед (Голландия), 25 ноября |
1974 | Джонни Реп, Ян Йонгблед (Голландия), 25 ноября |
1970 | Пьацца (Бразилия), Пьерлуиджи Чера (Италия), 25 февраля |
С первого взгляда это воспринимается как удивительный набор совпадений, однако с точки зрения математики в этом списке нет ничего выдающегося, потому что стоит только случайно выбрать группу из 23 человек, как окажется, что совпадение дней рождения у двух людей в группе будет более вероятным, чем отсутствие таких совпадений. Это явление известно как парадокс дней рождения. В нем нет никаких противоречий, однако же он бросает вызов здравому смыслу: число 23 кажется абсурдно малым для такого совпадения.
Доказательство парадокса дней рождения похоже на те доказательства, что мы использовали в начале главы, изучая комбинации, выпадающие при бросании костей. На самом деле можно переформулировать парадокс дней рождения в виде следующего утверждения: если взять кость с 365 сторонами, то после 23 бросаний более вероятно, что одна и та же грань выпадет два раза, чем что такого не случится.
Шаг 1
Вероятность того, что у двух человек в группе окажется одна и та же дата рождения, равна единице минус вероятность того, что ни у каких двух людей в этой группе дни рождения не совпадут.
Шаг 2
Вероятность того, что в группе из двух человек их дни рождения не совпадут, равна >365/>365 × >364/>365. Так получается, потому что первый человек может родиться в любой день (365 возможностей из полного числа 365), а для второго остается любой из дней за исключением того, когда родился первый (364 возможности из полного числа 365). Для простоты не будем обращать внимания на лишний день в високосные годы.
Шаг 3
Вероятность того, что ни у кого в группе из трех человек даты рождения не попадут на один и тот же день, равна >365/>365 × >364/>365 × >363/>365. В группе из четырех человек она оказывается равной >365/>365 × >364/>365 × >363/>365 × >362/>365 и т. д. Каждое следующее умножение делает результат все меньше и меньше. Когда в группе оказывается 23 человека, результат наконец пересекает отметку в 0,5 (точное значение равно 0,493).
Шаг 4
Если вероятность того, что ни у каких двух человек даты рождения не попадут на один и тот же день, меньше чем 0,5, то вероятность того, что по крайней мере у двух дни рождения совпадут, оказывается больше 0,5 (из шага 1). Так что в группе из 23 человек скорее окажется, что какие-то два человека родились в один и тот же день, чем наоборот.
Футбольные матчи предоставляют нам идеальную выборку, демонстрирующую, что реальные факты отвечают предсказаниям теории, потому что на поле всегда имеется 23 человека — две команды из и игроков и судья. Впрочем, рассмотрение с этой точки зрения финалов чемпионата мира показывает, что парадокс дней рождения работает чуть-чуть слишком хорошо. Вероятность, что у двух людей в группе из 23 человек окажется один и тот же день рождения, равна 0,507, что лишь едва больше 50 процентов. Однако же, судя по нашему списку, такое случилось в семи из десяти случаев (даже если исключить близнецов ван де Керкхоф), что дает 70 процентов[58].
Частично это следует отнести на счет закона больших чисел. Если бы я анализировал все матчи, сыгранные на чемпионатах мира, то можно было бы пребывать практически в полной уверенности, что результат окажется близким к 50,7 процента. Однако имеется и еще одна переменная. Равномерно ли распределены дни рождения футболистов на протяжении всего года? Возможно, нет. Исследования показывают, что для футболистов выше вероятность рождения в определенные времена года — вероятностное предпочтение оказывается у тех, кто родился сразу после даты, которая разделяет тех, кого записывают в школу на текущий год или на следующий. Дело в том, что родившиеся вскоре после этой даты будут самыми старшими в своем классе, а потому и самыми крупными, и будут показывать лучшие результаты в спорте. А если в распределение дат рождения вносится какая-то систематическая поправка, то можно ожидать более высокой вероятности совпадения дней рождения. Например, в наше время значительное число детей появляются на свет посредством кесарева сечения или искусственных родов. Это чаще случается по рабочим дням (поскольку сотрудники родильных отделений предпочитают отдыхать по выходным), и в результате оказывается, что дни рождения распределены по календарным датам не самым случайным образом. Если взять выборку из 23 людей, рожденных за один и тот же 12-месячный период, — скажем, детей в классе начальной школы, — то окажется, что вероятность одного и того же дня рождения у двух из них существенно превосходит 50,7 процента.
Если у вас под рукой нет группы из 23 человек, чтобы проверить это, займитесь своими ближайшими родственниками. При наличии четырех человек имеется 70-процентная вероятность, что у двух из них дни рождения придутся на один и тот же месяц. Всего лишь семь человек требуется, чтобы вероятным оказался факт рождения двоих из них в одну и ту же неделю, а в группе из 14 человек имеется пятидесятипроцентная вероятность, что два дня рождения отстоят друг от друга не более чем на один день. По мере роста группы вероятность растет на удивление быстро. В группе из 35 человек шансы на наличие совпадающего дня рождения составляют 85 процентов, а в группе из 60 — уже более 99 процентов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.
Людям свойственно спокойно принимать тот факт, что зачастую они ведут себя как животные, они даже порой гордятся, что способны на «подлинную страсть». Но люди всегда страшно удивляются, что животным часто оказываются свойственны привычки, считающиеся чисто человеческими, — от шумных пирушек (с последующим неизбежным похмельем) до конфликтов «отцов и детей», от гомосексуализма до мафии. Английский писатель и биолог Огастес Браун пишет об этом с чисто английским юмором и тонкой наблюдательностью.
Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.
Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…