Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [83]

Шрифт
Интервал

число Фибоначчи.

Числа Фибоначчи встречаются также в спиральных узорах, которые образуют чешуйки сосновых шишек и ананасов, соцветия цветной капусты и семена подсолнухов. Можно пересчитывать витки спирали по часовой стрелке или против — все, что вы насчитаете в любом направлении, будет числами Фибоначчи. На ананасах, как правило, 5 и 8 спиралей, или же 8 и 13. На еловых шишках их обычно 8 и 13. У подсолнухов спиралей может быть 21 и 34 или же 34 и 55 — хотя известны примеры с 144 и 233 спиралями. Чем больше семян в подсолнухе, тем больше оказывается число спиралей.

Последовательность Фибоначчи называется так потому, что ее члены впервые появились в написанной Фибоначчи книге «Liber Abaci», в связи с задачей о кроликах. Однако свое имя эта последовательность приобрела лишь через более чем 600 лет после выхода книги — в 1877 году, когда ее изучал теоретико-числовик Эдуар Люка. Именно он решил воздать должное Фибоначчи, назвав последовательность его именем.

В книге «Liber Abaci» эта последовательность возникла из следующей задачи. Пусть у нас имеется пара кроликов, которая через месяц дает потомство — появляется еще пара кроликов. Если у каждой взрослой пары кроликов каждый месяц появляется потомство — пара крольчат, — а крольчатам требуется один месяц, чтобы стать взрослыми, то сколько кроликов получится от первой пары через год? Ответ на этот вопрос можно получить, пересчитывая кроликов из месяца в месяц. В первый месяц имеется всего одна пара. В второй месяц — две, поскольку исходная пара произвела новую. На третий месяц имеется три пары, потому что исходная пара снова размножилась, но другая пара лишь достигла зрелости. На четвертый месяц обе пары взрослых кроликов размножились, что добавит двойку к имеющейся тройке. Последовательность Фибоначчи — это полное число пар, подсчитанное месяц за месяцем:

 Полное число пар
1-й месяц: 1 взрослая пара1
2-й месяц: 1 взрослая пара и 1 пара крольчат2
3-й месяц: 2 взрослые пары и 1 пара крольчат3
4-й месяц: 3 взрослые пары и 2 пары крольчат5
5-й месяц: 5 взрослых пар и 3 пары крольчат8
6-й месяц: 8 взрослых пар и 5 пар крольчат13

Важное свойство последовательности Фибоначчи состоит в том, что она рекуррентная, — то есть каждый новый член порождается предыдущими. Это же помогает понять, почему числа Фибоначчи настолько распространены в природе. Многие живые организмы растут, следуя рекуррентному процессу.

* * *

Последовательность Фибоначчи не только описывает формирование плодов и процесс безостановочного размножения кроликов, но и обладает разнообразными увлекательными математическими свойствами. Закономерность будет легче увидеть, если мы выпишем первые 20 чисел. Каждое число Фибоначчи традиционно записывается с использованием буквы F, снабженной нижним индексом, который обозначает положение данного числа в последовательности:

F>0 = 0.   
F>1 = 1.F>6 = 8,F>11 = 89,F>16 = 987,
F>2 = 1.F>7 = 13,F>12 = 144.F>17 = 1597,
F>3 = 2,F>8 = 21,F>13 = 233,F>18 = 2584,
F>4 = 3,F>9 = 34,F>14 = 377,F>19 = 4181,
F>5 = 5,F>10. = 55,F>15 = 610,F>20 = 6765.

При более близком рассмотрении удается заметить, что наша последовательность воспроизводит саму себя многими и весьма неожиданными способами. Взглянем на числа F>3, F>6, F>9другими словами, на каждое третье F-число. Все они делятся на 2. А числа F>4, F>8, F>12 то есть каждое четвертое F-число — делятся на 3. Каждое пятое F-число делится на 5, каждое шестое F-число делится на 8, и каждое седьмое — на 13. Эти делители в точности являются F-числами из самой последовательности.

Другой впечатляющий пример получается при вычислении 1/F>11, то есть >1/>89. Это число равно сумме чисел

0,0

0,01

0,001

0,0002

0,00003

0,000005

0,0000008

0,00000013

0,000000021

0,0000000034

Таким образом, здесь снова высовывает голову последовательность Фибоначчи[51].

А вот другое интересное математическое свойство этого ряда. Возьмем любые три последовательных F-числа. Произведение первого на третье всегда на 1 отличается от квадрата второго числа.

Для F>4, F>5, F>6 имеем F>4 × F>6 = F>5 × F>5 - 1 (24 = 25 - 1).

Для F>5, F>6, F>7 имеем F>5 × F>7 = F>6 × F>6 +1 (65 = 64 + 1).

Для F>18, F>19, F>20 : F>18 × F>20 = F>19 × F>19 - 1 (17 480 760 = 17 480 761 - 1).

Это свойство лежит в основе магического фокуса возрастом в несколько сотен лет. Фокус состоит в том, что квадрат, состоящий из 64 единичных квадратов, можно разрезать на четыре куска так, что, сложив их по-другому, мы получим прямоугольник из 65 единичных квадратов. Вот как это делается: нарисуем квадрат, составленный из 64 маленьких квадратиков. Сторона большого квадрата имеет длину 8. В последовательности Фибоначчи два F-числа, идущие перед 8, — это 5 и 3. Разделим большой квадрат на куски, используя длины 5 и 3. Куски можно сложить по-другому в прямоугольник со сторонами длиной 5 и 13, и площадь этого прямоугольника равна 65:

Разгадка фокуса состоит в том, что после изменения конфигурации куски не точно прилегают друг к другу. Хотя этого и не видно сразу невооруженным глазом, на самом деле имеется тонкий длинный зазор вдоль средней диагонали, и площадь этого зазора равна площади одного маленького квадратика.


Еще от автора Алекс Беллос
Красота в квадрате

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.


Эврики и эйфории. Об ученых и их открытиях

Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.


Почему панда стоит на голове и другие удивительные истории о животных

Людям свойственно спокойно принимать тот факт, что зачастую они ведут себя как животные, они даже порой гордятся, что способны на «подлинную страсть». Но люди всегда страшно удивляются, что животным часто оказываются свойственны привычки, считающиеся чисто человеческими, — от шумных пирушек (с последующим неизбежным похмельем) до конфликтов «отцов и детей», от гомосексуализма до мафии. Английский писатель и биолог Огастес Браун пишет об этом с чисто английским юмором и тонкой наблюдательностью.


Империя звезд, или Белые карлики и черные дыры

Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.


Мозг онлайн. Человек в эпоху Интернета

Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…