Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [28]
Платоновы тела
В тринадцатой, заключительной, книге «Начал» Евклид доказал, почему имеется только пять Платоновых тел. Он рассмотрел все объемные объекты, которые можно собрать из правильных многоугольников: сначала равносторонний треугольник, затем квадраты, пятиугольники, шестиугольники и т. д. На рисунке показано, как он пришел к своему выводу. Чтобы построить объемный объект из многоугольников, необходима точка, в которой сходятся три стороны: такой угол называется вершиной. При соединении в вершине, например, трех равносторонних треугольников получается тетраэдр (А). При соединении четырех — пирамида (В). Такая пирамида — не платоново тело, потому что не все стороны у нее одинаковы, но, приклеив к ее дну отраженную пирамиду, получаем октаэдр — платоново тело. Соединение вместе пяти равносторонних треугольников дает начало икосаэдру (С), а вот соединение шести — плоский лист бумаги (D). Не удается сконструировать телесный угол из шести равносторонних треугольников, так что нет других способов сделать из них какие-либо Платоновы тела. Повторение той же процедуры с квадратами показывает, что есть только один способ соединить три квадрата в угол (E). Это построение приведет к кубу. Соединение четырех квадратов дает плоский лист бумаги (F). Из квадратов более не удается построить Платоновых тел. Аналогичным образом, три пятиугольника образуют телесный угол, который можно достроить до додекаэдра (G). Невозможно соединить четыре пятиугольника. Три шестиугольника, соединяющиеся в одной точке, уже лежат в одной плоскости (H), так что из них невозможно создать объемный объект. Больше Платоновых тел нет, поскольку невозможно соединить в вершине три правильных многоугольника с более чем шестью сторонами.
Доказательство того, что имеется только пять Платоновых тел
Математики продолжили работу Евклида, и это позволило им решить множество проблем, относящихся к реальному миру. Например, в 1471 году немецкий математик и астроном Региомонтанус (Иоанн Мюллер) написал своему другу письмо, в котором задал такую задачу: «Из какой точки на земле перпендикулярно стоящий стержень кажется самым большим?» То была перефразировка «задачи о статуе». Представьте себе, что перед вами на пьедестале установлена статуя. Когда вы подходите к ней слишком близко, приходится задирать голову, и угол, под которым она видна, очень узкий. Когда же вы отошли далеко, приходится напрягать глаза, и статуя, опять же, видна под очень малым углом. Где расположено наилучшее место для обзора статуи?
Взглянем на статую сбоку, как показано на рисунке. Нам нужно найти точку на пунктирной линии, отвечающей уровню глаз, так, чтобы угол, под которым видна статуя, был бы наибольшим. Решение можно извлечь из третьей книги «Начал», посвященной окружностям. Угол максимален, когда окружность, проходящая через верх и низ статуи, касается пунктирной линии.
Задача о статуе
Однако самый, быть может, ошеломляющий результат в евклидовой геометрии — это тот, в котором выявляется потрясающее свойство треугольников. Для начала найдем, где находится центр треугольника. Это на удивление неочевидное понятие. Имеется четыре способа определить центр треугольника, и все они представляют собой различные точки (за исключением случая, когда треугольник равносторонний, — тогда эти точки совпадают друг с другом). Первый называется ортоцентром — это пересечение перпендикуляров, проведенных из каждой вершины к противолежащей ей стороне (сами эти линии называются высотами). Уже довольно занятен тот факт, что в любом треугольнике его высоты всегда пересекаются в одной и той же точке. Второй кандидат на центр треугольника — это центр описанной окружности, лежащий на пересечении перпендикуляров, проведенных из середины каждой стороны. Опять же, очень мило, что эти линии всегда пересекаются[17], какой бы треугольник вы ни выбрали. Третий кандидат — центроид, представляющий собой пересечение линий, идущих от вершин к серединам противолежащих сторон. Они тоже всегда пересекаются. И наконец, имеется окружность шести точек — это окружность, проходящая через середину каждой стороны, а также через пересечения сторон и высот[18]. У каждого треугольника есть окружность шести точек, и ее центр — четвертый кандидат на среднюю точку треугольника. В 1767 году Леонард Эйлер доказал, что у каждого треугольника его ортоцентр, центр описанной окружности, центроид и центр окружности шести точек всегда лежат на одной прямой. Полный улет — независимо от вида треугольника эти четыре точки сохраняют ослепительно единообразное взаимоотношение друг с другом! Присутствующая здесь гармония поистине чудесна. Пифагор, надо думать, просто ликовал бы.
Построение прямой Эйлера
Сейчас даже трудно оценить важность Евклидовых «Начал» для всей античной культуры. Не теряют они своего значения и по сей день. Появившись около 300 года до н. э., вплоть до XX века эта книга была второй после Библии по числу переизданий. И тем не менее, сколь бы виртуозным ни был Евклидов метод, он не решал все проблемы; ответ некоторых задач, порой совсем простых, не получишь с помощью циркуля и линейки. Это глубоко огорчало греков. В 430 году до н. э. Афины поразила эпидемия брюшного тифа. Афиняне отправились за советом к делосскому оракулу, который предложил им в два раза увеличить размер посвященного Аполлону алтаря, имевшего форму куба. Радуясь, что столь простое дело принесет им избавление, афиняне построили новый алтарь (тоже в форме куба), стороны которого были вдвое длиннее сторон исходного алтаря. Однако при удвоении стороны куба объем его увеличивается в два в кубе, то есть в восемь раз. Аполлон не возрадовался и только усугубил заразу. Задача, заданная богом,
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.
Людям свойственно спокойно принимать тот факт, что зачастую они ведут себя как животные, они даже порой гордятся, что способны на «подлинную страсть». Но люди всегда страшно удивляются, что животным часто оказываются свойственны привычки, считающиеся чисто человеческими, — от шумных пирушек (с последующим неизбежным похмельем) до конфликтов «отцов и детей», от гомосексуализма до мафии. Английский писатель и биолог Огастес Браун пишет об этом с чисто английским юмором и тонкой наблюдательностью.
Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.
Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…