Альберт Эйнштейн - [19]
Планка интересовала обнаружившаяся в конце XIX века крупнейшая неувязка между теоретически выведенной (из уравнений Максвелла) формулой распределения энергии между различными длинами световых волн, испускаемых идеально-поглощающим («абсолютно черным») телом, и реальным распределением. Неувязку оказалось возможным устранить, если принять, что энергия световых лучей излучается, как уже говорилось, не сплошной струей, а «капля за каплей», квант за квантом, причем количество энергии, содержимое в каждой «капле», пропорционально частоте и обратно пропорционально длине световой волны. Самый богатый энергией квант поэтому, если взять видимую глазом область лучей, оказывается у наиболее коротковолновых — фиолетовых — лучей и равен примерно миллиардно-миллиардной доле калории. Самый малый принадлежит длинноволновым — красным — лучам и еще в два раза меньше. Множитель пропорциональности между количеством энергии, сосредоточенной в кванте, и частотой излучения был обозначен в планковой формуле буквенным знаком h, но никто, повторяем, и прежде всего Планк, не мог поверить тогда, что за этим значком скрывается «мировая постоянная», лежащая в основе микромира.
Вопрос о том, что происходит с квантом световой энергии после того, как он испущен веществом, также не особенно волновал Планка. Считалось навеки доказанным фактом, что свет распространяется в пространстве только в виде волн, и прерывистый, «капельный», характер испускания света мог бы и не противоречить этому факту. Сам Планк, во всяком случае, не усматривал тут особенной проблемы: обращавшимся к нему с вопросами он шутливо отвечал так: «Если пиво из бочки берут полулитровыми кружками, то из этого еще не следует, что пиво внутри бочки состоит из полулитровых порций и что пиво может перевозиться по железной дороге только полулитровыми порциями!»
Свою идею о квантах Планк изложил впервые 14 декабря 1900 года на заседании физического общества в Берлине.
Как вспоминали потом современники, доклад не вызвал особенного энтузиазма, и слушатели расходились скорее с чувством недоумения по поводу того, что им пришлось услышать.
Оставалась к тому же еще одна загадка, не получившая ответа у Планка и поражавшая тех немногих физиков, которые в ту пору занимались этими мало актуальными, как казалось, вещами….
В восьмидесятых годах Герц в Германии и Столетов в России заметили впервые, что под действием света металлические тела теряют отрицательный электрический заряд, — теряют, как было разъяснено вскоре, электроны. Явление это получило название «фотоэлектрического эффекта».
Что свет, как и любая физическая форма материи, способен оказывать давление на вещество и «выдавливать» из него, в частности, электроны, стало особенно ясным после того, как ученик Столетова — Лебедев в Москве проверил на тончайшем прямом опыте факт давления света. Любители образных сравнений добавляли, что подобно тому, как морские волны, набегая на прибрежную скалу, дробят и отрывают от нее куски камня, подобно этому и световые волны, ударяя о вещество, «выбивают» из его атомов еще более мелкие частички — электроны! Пусть так, но как понять тогда, почему скорость выбиваемых светом электронов, как окончательно убедились в 1902 году, вовсе не зависит от мощности, от яркости светового пучка, но зависит исключительно от его длины волны и частоты, то есть от цвета? Быстрее всего летят электроны, вырванные под ударом фиолетовых, а медленнее всего — под действием красных лучей. По достижении определенного — для каждого вещества своего собственного — наименьшего порога световой частоты выбивание электронов прекращается вовсе. Яркость света по-прежнему не играет тут никакой роли. Количество вырванных электронов, правда, зависит от интенсивности освещения: оно больше при воздействии более ярким светом. Но ведь главным показателем силы воздействия светового «прибоя» должно являться не количество выбитых «осколков», а как раз скорость, с которой они разбрасываются под ударом набегающей волны!
Читатель припоминает, однако, в этой связи, что кванты, или порции, коротковолнового — фиолетового — света как раз несут с собой больше энергии, чем кванты длинноволнового — красного. И не по этой ли именно причине удар «фиолетовых» квантов оказывается более эффективным, более чувствительным в смысле выбивания электронов из металла? Дело происходит, другими словами, примерно так, как при бомбардировке крепостной стены артиллерийскими снарядами. Размеры отдельных пробоин в стене (и скорости ее осколков) зависят не от интенсивности бомбардировки, то есть не от количества выпущенных снарядов, а только от калибра снарядов. Скорости брызнувших из металла электронов должны зависеть тогда тоже только от «калибра», от величины энергии ударившего кванта, что и наблюдается в действительности.
Во все это можно было поверить, но для этого надо было предварительно принять, что световая энергия не только черпается квантами в момент испускания света веществом, но и поглощается квантами, и что кванты существуют все время, пока распространяется свет. Надо принять, что свет состоит не только из волн, но и из частиц — из неведомых, из необычайных крупинок, зернышек, — Эйнштейн назвал их «световыми квантами» (сегодня физики пользуются также термином «фотоны», от греческого «фотос» — свет). Идею зернистой природы света, скажем кстати, высказывали еще две тысячи лет тому назад атомисты древности — Эпикур, Лукреций, Демокрит. В конце XVII столетия ту же идею попытался возобновить Ньютон. Но в те самые годы, когда великий англичанин опубликовал свою «Оптику», другой сильный ум, Христиан Гюйгенс, в Голландии с успехом развил представление о волнах света. Немалое количество опытных фактов, как оказалось вскоре, могло быть объяснено только на основе этого представления. В XIX веке Огюстен Френель и Клерк Максвелл двинулись еще дальше, воздвигнув великолепное здание волновой теории света, в рамках которой не осталось уже ровно никакого места для ньютоновских световых частиц… И вот на протяжении двухсот с лишним лет, истекших после Гюйгенса, ни один дерзкий ум не осмеливался выйти за эти пределы, ни один бунтарь не решался порвать с впитавшейся в плоть и кровь традицией, согласно которой свет есть волны, и только волны, и ничего иного, кроме волн!
В этой книге собраны публицистические очерки, объединенные общей темой. Речь пойдет о той своеобразной и изощренной форме, в которой выступают сегодня древние суеверия и мистические ритуалы, такие, как, колдовство, телепатия, магия, спиритизм, «волшебный прут», «третий глаз» и так далее. Над некоторыми из этих первобытных верований, дошедших к нам из времен детства человечества, можно было бы посмеяться и не придавать им чрезмерного значения. Но что сказать о суевериях, когда они гримируются «под науку», присваивают себе терминологию и внешние приемы науки, жонглируют мнимыми «научными» экспериментами и столь же сомнительными «гипотезами»? Тут уж не до смеха.
Валерий Тарсис — литературный критик, писатель и переводчик. В 1960-м году он переслал английскому издателю рукопись «Сказание о синей мухе», в которой едко критиковалась жизнь в хрущевской России. Этот текст вышел в октябре 1962 года. В августе 1962 года Тарсис был арестован и помещен в московскую психиатрическую больницу имени Кащенко. «Палата № 7» представляет собой отчет о том, что происходило в «лечебнице для душевнобольных».
Его уникальный голос много лет был и остается визитной карточкой музыкального коллектива, которым долгое время руководил Владимир Мулявин, песни в его исполнении давно уже стали хитами, известными во всем мире. Леонид Борткевич (это имя хорошо известно меломанам и любителям музыки) — солист ансамбля «Песняры», а с 2003 года — музыкальный руководитель легендарного белорусского коллектива — в своей книге расскажет о самом сокровенном из личной жизни и творческой деятельности. О дружбе и сотрудничестве с выдающимся музыкантом Владимиром Мулявиным, о любви и отношениях со своей супругой и матерью долгожданного сына, легендой советской гимнастики Ольгой Корбут, об уникальности и самобытности «Песняров» вы узнаете со страниц этой книги из первых уст.
Автору этих воспоминаний пришлось многое пережить — ее отца, заместителя наркома пищевой промышленности, расстреляли в 1938-м, мать сослали, братья погибли на фронте… В 1978 году она встретилась с писателем Анатолием Рыбаковым. В книге рассказывается о том, как они вместе работали над его романами, как в течение 21 года издательства не решались опубликовать его «Детей Арбата», как приняли потом эту книгу во всем мире.
Книга А.К.Зиберовой «Записки сотрудницы Смерша» охватывает период с начала 1920-х годов и по наши дни. Во время Великой Отечественной войны Анна Кузьминична, выпускница Московского педагогического института, пришла на службу в военную контрразведку и проработала в органах государственной безопасности более сорока лет. Об этой службе, о сотрудниках военной контрразведки, а также о Москве 1920-2010-х рассказывает ее книга.
Книжечка юриста и детского писателя Ф. Н. Наливкина (1810 1868) посвящена знаменитым «маленьким людям» в истории.
В работе А. И. Блиновой рассматривается история творческой биографии В. С. Высоцкого на экране, ее особенности. На основе подробного анализа экранных ролей Владимира Высоцкого автор исследует поступательный процесс его актерского становления — от первых, эпизодических до главных, масштабных, мощных образов. В книге использованы отрывки из писем Владимира Высоцкого, рассказы его друзей, коллег.