Актуальность сложности. Вероятность и моделирование динамических систем - [4]
Правило иррегулярности Мизес определял следующим образом: предельное значение относительной частоты, с которым выступает в коллективе какой-либо признак, должно оставаться неизменным, если из всей последовательности произвольно выбрать любую часть и рассматривать в дальнейшем только эту часть. При этом, выбранная частичная последовательность должна быть безграничной, как и сама основная последовательность. То есть, любой признак в любой части коллектива должен иметь ту же самую долю, что и во всем коллективе [11].
В последующем было показано, что требование предела относительных частот находится в противоречии с требованием правила иррегулярности. Аргументы в этом случае таковы: Понятие предела связано с бесконечной последовательностью, которая не может быть задана актуально вследствие того, что такое задание должно производиться через общий закон образования ее членов по нумерическому признаку. Но это-то и запрещается правилом иррегулярности. В то же время из математики хорошо известно, что только в таком случае можно вести речь о строгом математическом пределе [12]. В другом месте читаем: «...самое понятие предела в его обычном понимании применимо лишь к индивидуальной, закономерно определенной последовательности. Там, где закономерностей, определяющих данную последовательность, нет и принципиально быть не может, нельзя даже ставить вопроса о существовании или несуществовании предела» [13].
Позже Мизес предлагал раскрыть коллектив не как актуальную, а становящуюся последовательность. Но, с математической точки зрения, у такой последовательности также не может быть предела.
Р. Мизес пытался уточнить определение иррегулярности, объявляя ее уже нечувствительностью не к любому закону выбора, а по отношению к счетному множеству законов, сформулированных в рамках определенной формализованной логики. Ибо, в реальной ситуации речь всегда идет о некотором конечном числе операций выбора. За пределами этой формализованной системы оказывается возможным задать явно случайную последовательность обладающую свойством коллектива, по крайней мере, в принципе [14].
Давая оценку концепции Мизеса, надо отметить: 1) Невозможность на ее основе делать определенные предсказания о течении реальных процессов. И указанное выше уточнение не снимает этой трудности, поскольку не затрагивает понятия предела. Идеализация Мизеса в этом пункте чрезвычайно нечеткая, и ее приложение к реальным испытаниям слабо обосновано. Например, согласно позиции Мизеса, мы не можем сказать хотя бы предположительно заранее, сколько раз при 1000 подбрасываний «правильной» монеты выпадет «герб». По Мизесу надо бы ответить, что возможны все числа - от 0 до 1000 раз. Реальное же испытание дает некоторое устойчивое число, вокруг которого группируются выпадения «герба». Без дополнительного постулата, как указывал А.Я.Хинчин, до произведения испытаний Мизес не может сделать никакого выбора из возможных чисел выпадения «герба». Можно лишь вычислить вероятность того, что «герб» выпадет столько-то раз[15]. 2) Учение Мизеса о вероятностях приложимо лишь к некоторому идеализированному процессу бесконечного эксперимента и неясно как его применить к реальным процессам, которые всегда конечны. 3) Проблема сложности здесь не решена.
Настаивая на эмпирическом обосновании понятия вероятности и отбрасывая классическую теорию из-за отсутствия такого обоснования, частотный подход Мизеса оказался неспособным удержать то положительное, что нес в себе классический подход. Оно состояло в следующем. Неявным образом при определении вероятности принимались во внимание определенные свойства индивидуального объекта, характеризующие набор объективных возможностей его поведения в испытании (например, однородность строения, симметрия и т.п.). Благодаря этому в известном смысле обоснованным становилось приложение классической теории к реальным сериям испытаний.
Следует заметить, что эта сторона классического подхода обычно остается в тени. Более того, вместе с принципом недостаточного основания, символизирующим субъективизм и априоризм данной концепции, отбрасывают самую идею «равновозможности» как исходный пункт истолкования вероятности. Между тем, эту концепцию, если придавать «равновозможности» объективный смысл, нельзя рассматривать как полностью преодоленный этап. Скорее правы те авторы, которые считают, что теоретическое истолкование вероятности на базе данного понятия не исчерпало себя полностью. Так, А.Я.Хинчин, разбирая в одной из своих статей пример Мизеса с неправильной костью, показывал, что противопоставление данного случая идее равновозможности не оправдано, если исходить из некоторых топологических представлений[16].
Поставленный выше вопрос о возможности эмпирических предсказаний на основе теории Мизеса непосредственно связан с так называемой проблемой тестификации вероятностных суждений (проблемой их эмпирических испытаний). Сложность ее решения в рамках данной концепции вытекает из нечеткости ее базовых понятий.
В самом деле, если рассматривать классы, связываемые посредством отношений частот, как бесконечные, тогда ни одно конечное число экспериментов не в состоянии ни полностью подтвердить, ни полностью опровергнуть вероятностное суждение, ибо частотный подход не имеет каких-либо разумных средств ограничения требования иррегулярности. Теоретически здесь нельзя исключать факта, что любая конечная серия проведенных экспериментов может оказаться лишь флюктуацией с каким угодно большим отклонением относительной частоты в данной серии от относительной частоты во всем бесконечном классе. Между тем, на практике прогнозы по конечным наблюдаемым сериям являются обычным делом.
В книге исследуется теоретический статус и методологические основания науки о системах. Дается характеристика форм и ступеней становления и развития базовых идей системоведения. Анализируется соотношение принципа системности с принципом связи, принципом причинности, принципами организации и развития. Рассматривается категориальный ряд системного подхода на фоне понятий структура, функция, вероятность, информация и других понятий общенаучного характера. Выявляется практическая значимость принципа системности для решения задач социального управления.
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812 – 2012)Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842 – 1918). Этот перевод издавался дважды:1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах – по числу книг в произведении);1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах – по числу частей в произведении).Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация – своя на каждую книгу)
В настоящее время Мишель Фуко является одним из наиболее цитируемых авторов в области современной философии и теории культуры. В 90-е годы в России были опубликованы практически все основные произведения этого автора. Однако отечественному читателю остается практически неизвестной деятельность Фуко-политика, нашедшая свое отражение в многочисленных статьях и интервью.Среди тем, затронутых Фуко: проблема связи между знанием и властью, изменение механизмов функционирования власти в современных обществах, роль и статус интеллектуала, судьба основных политических идеологий XX столетия.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Автор книги — немецкий врач — обращается к личности Парацельса, врача, философа, алхимика, мистика. В эпоху Реформации, когда религия, литература, наука оказались скованными цепями догматизма, ханжества и лицемерия, Парацельс совершил революцию в духовной жизни западной цивилизации.Он не просто будоражил общество, выводил его из средневековой спячки своими речами, своим учением, всем своим образом жизни. Весьма велико и его литературное наследие. Философия, медицина, пневматология (учение о духах), космология, антропология, алхимия, астрология, магия — вот далеко не полный перечень тем его трудов.Автор много цитирует самого Парацельса, и оттого голос этого удивительного человека как бы звучит со страниц книги, придает ей жизненность и подлинность.
Размышления знаменитого писателя-фантаста и философа о кибернетике, ее роли и месте в современном мире в контексте связанных с этой наукой – и порождаемых ею – социальных, психологических и нравственных проблемах. Как выглядят с точки зрения кибернетики различные модели общества? Какая система более устойчива: абсолютная тирания или полная анархия? Может ли современная наука даровать человеку бессмертие, и если да, то как быть в этом случае с проблемой идентичности личности?Написанная в конце пятидесятых годов XX века, снабженная впоследствии приложением и дополнением, эта книга по-прежнему актуальна.