500 схем для радиолюбителей. Дистанционное управление моделями - [12]

Шрифт
Интервал


2.2.5. Импульсный шифратор на микросхеме КР1008ВЖ14


Принципиальная схема

Если не нужна высокая оперативность передачи команд, десятиканальный шифратор можно реализовать на специализированной микросхеме телефонного номеронабирателя. Выпускается достаточно широкий ассортимент как отечественных, так и импортных микросхем для телефонных аппаратов. Отличительной особенностью таких микросхем является низкое напряжение питания и малый ток потребления. Для используемого экземпляра это 1,5–4,5 В и 150 мкА соответственно.

Принципиальная схема шифратора (рис. 2.13) практически полностью повторяет стандартную схему включения.



Рис. 2.13.Шифратор на КР1008ВЖ14


Обычно частота следования выходных импульсов микросхем не превышает 10 Гц. Изменением номиналов частотозадающих элементов R2, С1, по сравнению с рекомендуемыми, автору удалось повысить частоту лишь в три раза. Дальнейшее уменьшение постоянной времени приводит к завалу фронтов импульсов тактового генератора (вывод 9 DA1) и, как следствие, к уменьшению их амплитуды. Большая инерционность микросхемы, очевидно, является платой за малую мощность потребления.

На выходе электронного ключа VT1 при нажатии на какую либо из командных кнопок появляется соответствующее количество прямоугольных импульсов амплитудой 5 В.


Детали и конструкция

Микросхему DA1 можно поменять на КР1008ВЖ10,11 с любым цифровым индексом в конце обозначения с соответствующей корректировкой печатной платы. Подойдут на тех же условиях импортные аналоги WE9192B, KS5805A, KS5851 и т. п. Транзистор VT1 может быть любым маломощным структуры n-р-n. Стабилизатор напряжения DA2 на 3 В заменяется любым импортным аналогом, например 78L03. В качестве командных кнопок SA1—SA10 удобно использовать стандартную клавиатуру от телефонных аппаратов. В этом случае SA10 на клавиатуре соответствует кнопка «0».

Печатная плата выполнена из одностороннего стеклотекстолита. Ее топология приведена на рис. 2.14.



Рис. 2.14. Печатная плата


2.2.6. Кодово-импульсный шифратор


Принцип действия

Основное преимущество кодово-импульсной модуляции перед импульсной заключается в существенно большем числе передаваемых команд при том же количестве импульсов в кодовой посылке. Если в только что рассмотренном шифраторе десятью импульсами можно передать лишь десять разных команд, то при использовании десятипозиционного двоичного кода — 2>10 = 1024 команды.

Такой тип кодирования широко используется в различных системах охранной сигнализации, для которых выпускаются специализированные микросхемы кодеров и декодеров. Часто одна и та же микросхема выполняет обе эти функции и называется кодеком.

Как правило, в них заложена возможность генерации сотен тысяч кодов, но программирование конкретного варианта производится однократно, и оперативная перестройка не предусматривается. Это затрудняет их использование в качестве многоканальных шифраторов, да и такое количество кодов при дистанционном управлении не требуется.

Кроме того, пульты управления моделями не настолько миниатюрны, чтобы отказаться от построения шифраторов на более доступных универсальных цифровых микросхемах. Именно такой вариант исполнения шифратора и рассмотрен ниже.


Принципиальная схема

Принципиальная схема девятиканального шифратора приведена на рис. 2.15.



Рис. 2.15.Принципиальная схема импульсно-кодового шифратора


Логика функционирования и технические характеристики устройства предполагают его использование совместно с дешифратором, описанным в разделе 6.1.3.

Рассмотрим принцип действия шифратора. Заявленное количество каналов требует использования четырехразрядного двоичного кода. Принцип формирования модифицированной кодовой посылки проиллюстрирован ранее (рис. 1.2). Из рисунка видно, что вначале необходимо сформировать последовательность тактовых импульсов, расстояние между которыми будет определять интервал времени, отводимый на передачу одного разряда двоичного числа.

Эта задача решается с помощью тактового генератора, представляющего собой автоколебательный мультивибратор, реализованный на элементах DD3.2, DD3.3. Величина разрядного интервала τ определяется постоянной времени R10, С1 и выбрана равной 5 мс.

Как известно, мультивибратор на логических элементах вырабатывает последовательность прямоугольных импульсов, близкую по форме к меандру. Для формирования узких тактовых импульсов последовательность пропускается через укорачивающее устройство, реализованное на базе дифференцирующей цепи С2, R11 и элемента DD5.1.

Принцип укорачивания импульсов иллюстрирует рис. 2.16, на котором приведены результаты моделирования узла с помощью программы Micro-Cap 8.



Рис. 2.16.Эпюры напряжений в характерных точках тактового генератора:

>a — импульсы на выходе мультивибратора (вывод 4 DD3.3); б — импульсы на выходе дифференцирующей цепи (вывод 1 DD5.1); в — выходные импульсы формирователя


Величина, обозначенная как U>ср, представляет собой напряжение срабатывания логического элемента DD5.1 и для микросхем КМОП соответствует примерно половине напряжения питания (2,5 В). Постоянная времени дифференцирующей цепи выбрана так, чтобы длительность выходных импульсов (


Рекомендуем почитать
Искусство схемотехники. Том 1 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.


Искусство схемотехники. Том 3 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.


Электроника?.. Нет ничего проще!

Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.Книга рассчитана на широкий круг читателей.


А. С. Попов и советская радиотехника

Более полувека назад произошло одно из самых славных событий в истории русской науки: 7 мая 1895 г. великий русский учёный А. С. Попов продемонстрировал изобретённый и построенный им первый в мире радиоприёмник. С тех пор радиотехника прошла огромный путь развития — от посылки и приёма телеграфных сигналов до передачи изображений по радио. Радио стало мощнейшим средством связи и обороны нашей Родины, орудием политического и культурного воспитания, могучим средством организации масс.


Рецептура радиолюбителя (Консультация центрального радиоклуба)

В данной листовке приводится ряд рецептов склеивания, встречающихся в радиолюбительской практике, способы художественной отделки деревянных ящиков для радиоаппаратуры и некоторые практические советы радиолюбителям.


Радиоцензура

В отличие от темы иновещания тематика радиотехнической борьбы между "социалистическим" лагерем и капиталистическими странами остаётся практически неизвестной массовому читателю.В данной работе автор - Римантас Плейкис (бывший министр связи Литвы в 1996-1998 гг.) подробно рассматривает радиоцензуру (синонимы: радиозащита, радиоподавление, постановка помех, глушение, радиопротиводействие, забивка антисоветских радиопередач, радиоэлектронная борьба).Без преувеличения эта статья, написанная в 2002-2003 годах, закрывает еще одно "белое пятно" в противостоянии двух военно-политических блоков и раскрывает технологию радиотехнической цензуры.К сожалению, для русскоязычных читателей доступен только электронный вариант данного исследования.