500 схем для радиолюбителей. Дистанционное управление моделями - [13]
Двоичное число, представляющее код команды, формируется на выходах А1—А4 шифратора DD1 при нажатии одной из командных кнопок SA1—SA9. Это число подается на входы параллельной записи D1—D4 регистра DD2. Запись числа в регистр производится при наличии высокого потенциала на переключающем входе «Р/S» микросхемы. При подаче на этот вход низкого потенциала производится последовательный вывод разрядов двоичного числа (через выход «Q3» регистра) по передним фронтам тактовых импульсов, подаваемых на вход «С» микросхемы. Для полного вывода числа, очевидно, требуется четыре тактовых импульса.
Управление переключением режимов параллельной записи и последовательного вывода производится с помощью служебных импульсов, вырабатываемых счетчиком DD4 из тактовой последовательности, подаваемой на его вход «С». Счетчик в течение четырех тактов обеспечивает на своем выходе 12 высокий потенциал, необходимый для режима записи, а в течение следующих четырех — низкий переключающий регистр в режим последовательного вывода.
Элементы DD3.1, DD5.2, DD5.3 и DD3.4 обеспечивают формирование модифицированной кодовой посылки в форме, изображенной на рис. 1.2, в. Читатели, желающие разобраться с процедурой формирования подробней, могут получить графики сигналов в характерных точках, моделируя работу шифратора в упомянутой выше программе.
Интегрирующая цепь R12-C6, совместно с элементом DD5.4 устраняет короткие всплески («иголки») в начале и конце формируемых импульсов, возникающие из-за неточного временного совпадения импульсов на входах логических элементов. При отсутствии такой цепи на приемной стороне возникали бы ошибки при дешифрации команд.
Детали и конструкция
Указанные на схеме цифровые элементы могут быть заменены импортными аналогами:
♦ КР1564ИВЗ — 74НС147;
♦ К561ИР9 — CD4035B;
♦ К561ИЕ9 — CD4022;
♦ К561ЛЕ5 — CD4001;
♦ К561ЛП2 — CD4030.
Конденсаторы С1 и С2 должны быть пленочными или металлобумажными, например К73-17.
Печатная плата устройства приведена на рис. 2.17.
Рис. 2.17.Печатная плата шифратора
Настройка
Настройка устройства заключается в установке периода следования импульсов на выводе 4 элемента DD3.3 равным 5 мс (контролируется на экране осциллографа). Для этого подбирается величина резистора R10. Далее щуп осциллографа переносят на вывод 3 DD5.1, и подбором величины резистора R11 устанавливают длительность тактовых импульсов равной 0,5 мс.
При исправных деталях и аккуратном монтаже на выходе шифратора должна наблюдаться картина, аналогичная изображенной на рис. 1.2, в. Двоичное число (младший разряд справа) соответствует номеру нажатой командной кнопки. Кодовая посылка будет повторяться с периодом 40 мс все время, пока будет нажата командная кнопка. Если ни одна из кнопок не нажата, при включенном питании шифратор все время вырабатывает кодовую комбинацию 0000.
2.2.7. Шифратор на специализированной микросхеме
Принципиальная схема
Фирма «Pericon Technology inc.» выпускает комплект микросхем РТ8А977В и РТ8А978В, представляющих собой пару «кодер — декодер» для дискретного дистанционного управления.
Комплект позволяет поочередно или параллельно передавать до пяти различных команд, чего вполне достаточно для управления большинством моделей. На рис. 2.18 приведена типовая схема включения кодера в качестве дискретного шифратора.
Рис. 2.18.Принципиальна» схема шифратора на РТ8А977ВР
Микросхема содержит тактовый генератор, частота которого определяется величиной резистора R1 (в рассматриваемой схеме равна 128 кГц). При отжатых кнопках схема находится в дежурном режиме и потребляет очень малый ток (около 5 мкА). При передаче команды (кнопки SB1—SB5) ток возрастает до 100 мкА, и на выходе «SО» формируется кодово-импульсная посылка, готовая для подачи на вход модулятора.
При использовании ИК-передатчика (передатчика, работающего в инфракрасном диапазоне) используется выход «SC», на котором кодовые импульсы заполняются поднесущей частотой, что необходимо для нормальной работы ИК-приемника. Частота заполнения равна половине тактовой. При желании ее можно довести до 30 кГц подбором резистора R1. На выходе «РС» на все время передачи команды появляется единичный уровень напряжения, что можно использовать для включения питания передатчика.
Детали и конструкция
Печатная плата достаточно проста и поэтому здесь не приводится.
2.3.1. Простой шифратор на транзисторах
Принципиальная схема
В разделе 1.2.2 отмечались недостатки двухканального шифратора, выполненного на базе автоколебательного мультивибратора. Однако в целом ряде случаев (например для простейших моделей-игрушек) взаимной связью между каналами можно пренебречь. Если модель находится в поле зрения оператора, то несложно отработать поправку на эту связь в процессе управления. Положительным же качеством такого шифратора является его простота.
Принципиальная схема шифратора приведена на рис. 2.19.
Рис. 2.19.Принципиальная схема шифратора
Он реализован на транзисторах VT1,VT2 по схеме автоколебательного мультивибратора с коллекторно-базовыми связями.
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.Книга рассчитана на широкий круг читателей.
Более полувека назад произошло одно из самых славных событий в истории русской науки: 7 мая 1895 г. великий русский учёный А. С. Попов продемонстрировал изобретённый и построенный им первый в мире радиоприёмник. С тех пор радиотехника прошла огромный путь развития — от посылки и приёма телеграфных сигналов до передачи изображений по радио. Радио стало мощнейшим средством связи и обороны нашей Родины, орудием политического и культурного воспитания, могучим средством организации масс.
В данной листовке приводится ряд рецептов склеивания, встречающихся в радиолюбительской практике, способы художественной отделки деревянных ящиков для радиоаппаратуры и некоторые практические советы радиолюбителям.
В отличие от темы иновещания тематика радиотехнической борьбы между "социалистическим" лагерем и капиталистическими странами остаётся практически неизвестной массовому читателю.В данной работе автор - Римантас Плейкис (бывший министр связи Литвы в 1996-1998 гг.) подробно рассматривает радиоцензуру (синонимы: радиозащита, радиоподавление, постановка помех, глушение, радиопротиводействие, забивка антисоветских радиопередач, радиоэлектронная борьба).Без преувеличения эта статья, написанная в 2002-2003 годах, закрывает еще одно "белое пятно" в противостоянии двух военно-политических блоков и раскрывает технологию радиотехнической цензуры.К сожалению, для русскоязычных читателей доступен только электронный вариант данного исследования.