25 этюдов о шифрах - [14]
Среди последних достижений в этой области можно упомянуть об успехе Ленстры и Монасси, разложивших в июне 1990 года 155-разрядное число на три простых. Для этого они использовали 1000 объединенных ЭВМ и шесть недель их машинного времени. Вычисления проводились с помощью алгоритма английского математика Дж. Полларда. Ленстра и Монасси считают, что в настоящее время (1991 г.) можно в течение года разложить новые классы целых чисел длиной до 155 разрядов, затратив на это $200 млн.
Еще одна большая проблема — дискретное логарифмирование в конечных полях. Пусть, например, нам даны элементы a и b из конечного поля F, причем известно, что a=b>x при некотором натуральном x. Задача дискретного логарифмирования состоит в том, чтобы определить это x. Можно, разумеется, просто перебирать последовательно все натуральные числа, проверяя, выполнено ли указанное равенство, но это будет экспоненциальный алгоритм. Пока наилучший из разработанных математиками алгоритмов дискретного логарифмирования является субэкспоненциальным.
В настоящее время эти описанные трудные математические проблемы имеют многочисленные криптографические приложения (см. этюды 3.5, 3.6, 3.7).
3.5. Криптосистема RSA
В этюде 3.2 описано, как Диффи и Хеллмэн с помощью односторонней функции с секретом построили криптосистему с открытым ключом. Правда, они не предложили функций, удобных для реализации.
Однако уже в начале 1977 г. американские специалисты по компьютерным наукам Р. Ривест, А. Шамир и Л. Адлеман придумали одну такую функцию. Система на основе этой функции оказалась очень практичной и получила широкое распространение под названием «система RSA» по первым английским буквам фамилий авторов.
Опишем систему RSA. При этом мы будем использовать без подробных пояснений обозначения и результаты этюдов 3.2 и 3.3. Пусть n=pq, где p и q — большие простые числа, а e — некоторое число, взаимно простое с φ(n). Найдем число d из уравнения: d∙e=1(modφ(n)).
Числа p, q и d будем считать секретными и обозначим секрет K={p, q, d}. Числа n и e будем считать общедоступными. Множества открытых сообщений X и шифрованных сообщений Y будем считать равными: X = Y = {1, 2, ... , n−1}.
Функцию F>K : X → Y определим равенством: F>K(x) = x>e(modn).
Свойство а) односторонней функции с секретом выполнено для F>K очевидным образом. Проверим свойство в). Для этого просто укажем, как при известном K инвертировать функцию F>K: решением уравнения F>K(x) = y будет x = y>d(modn). Подробное доказательство этого факта оставляем читателю, приведем лишь необходимые выкладки без комментариев:
d∙e = φ(n)∙m + 1
(x>e)>d(modn) = x>φ(n)∙m+1(modn) = (x>φ(n))>m∙x(modn) = (1)>m∙x(modn) = x.
Свойство б) для функции F>K строго не доказано. Пока общепризнано, что для инвертирования F>K необходимо разложить n на множители, а, как указывалось в этюде 3.4, задача факторизации целых чисел относится к трудным математическим задачам.
Таким образом, описанную функцию F>K можно считать кандидатом на звание односторонней функции с секретом. Система RSA строится с помощью этой функции так, как рассказано в этюде 3.2.
В газете «Известия» за 29 апреля 1994 г. под заголовком «Сверхсекретный шифр разгадан за 17 лет» появилось следующее сообщение: «Когда в 1977 году математики Рональд Ривест, Ади Шамир и Леонард Адлеман зашифровали фразу из нескольких слов, используя комбинацию из 129 цифр, они утверждали, что на разгадку понадобятся триллионы лет. Однако ключ к самому сложному в мире шифру «РСА-129» (RSA) был найден за 17 лет... Разгадка шифра за такой относительно короткий срок имеет огромное значение для государственных организаций и предпринимателей, которые пользуются аналогичными длинными цифровыми кодами для защиты секретных сведений в своих компьютерных базах данных...» Пока это сообщение не подтверждено научными публикациями, ясно лишь, что речь идет о том, что удалось разложить на множители то 129-значное число, которое было использовано в 1977 году. Но уже давно в реальных системах RSA используются более длинные числа.
Подумайте сами:
1. Разберите примеры работы системы RSA, приведённые на стр. 241–243 книги М. Гарднера «От мозаик Пенроуза к надёжным шрифтам».
3.6. Открытое распределение ключей
Кроме принципа построения криптосистемы с открытым ключом, Диффи и Хеллмэн в той же работе предложили еще одну новую идею — открытое распределение ключей. Они задались вопросом: можно ли организовать такую процедуру взаимодействия абонентов A и B по открытым каналам связи, чтобы решить следующие задачи:
1) вначале у A и B нет никакой общей секретной информации, но в конце процедуры такая общая секретная информация (общий ключ) у A и B появляется, т.е. вырабатывается;
2) противник, который перехватывает все передачи информации и знает, что хотят получить A и B, тем не менее не может восстановить выработанный общий ключ A и B.
Диффи и Хеллмэн предложили решать эти задачи с помощью функции F(x) = α>x(modp), где p — большое простое число,
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.