25 этюдов о шифрах - [13]

Шрифт
Интервал

F, что a+x=x+a=0 (такой элемент называется противоположным к данному).

4) Для каждых двух элементов a, bFa+b=b+a.

5) Для каждых трех элементов a, b, cFa∙(bc)=(ab)∙c.

6) В множестве F есть элемент 1 (не равный 0) такой, что для каждого aFa∙1=1∙a=a.

7) Для каждого элемента aF, a≠0 существует такой элемент xF, что ax=xa=1 (такой элемент называется обратным к данному).

8) Для каждых двух элементов a, bFab=ba.

9) Для каждых трех элементов a, b, cFa∙(b+c)=ab+ac.

Свойства 1) – 4) — это свойства операции сложения, свойства 5) – 8) — свойства операции умножения, а свойство 9) устанавливает связь между этими двумя операциями.

Оказывается, в математике существует много других множеств с парами операций на них, обладающих теми же самыми свойствами. Для таких множеств есть даже специальное название: поле.

Полем называется множество F с двумя отображениями («операциями»), каждое из которых сопоставляет любой паре элементов из F однозначно определенный третий элемент из F, и эти отображения (условно обозначаемые «+» и «∙») удовлетворяют девяти аксиомам (свойствам), приведенным выше.

Особенно важными для криптографии являются конечные поля. Сконструируем одно из таких полей.

Пусть p — простое число. Рассмотрим множество чисел {0, 1, 2, ..., p−1} с операциями сложения и умножения по модулю p (суммой двух чисел считаем остаток от деления на p обычной суммы, произведением — остаток от деления на p обычного произведения). Легко проверить, что свойства 1) – 4) выполнены: для свойств 1) и 4) это очевидно, элемент 0 в свойстве 2) — это обычный нуль, противоположный к элементу a в свойстве 3) — это элемент pa. Так же легко проверяются свойства 5), 6), 8) и 9). Свойство 7) надо доказывать. Предлагаем вам доказать это самостоятельно, поясним только идею: для каждого a ∈ {0, 1, 2, ..., p−1} требуется найти такие x и y, что ax=1+py, т.е. axpy=1, а такие x и y всегда можно найти с помощью алгоритма Евклида.

Конечное поле — очень интересный математический объект. Оказывается, например, что число элементов в конечном поле может быть только степенью простого числа, и наоборот, для любого простого числа p и для любого натурального числа n существует и в некотором смысле единственное поле из p>n элементов. Для него введено даже специальное обозначение: GF(p>n).

Поясним более подробно, в каком смысле поле из p>n элементов единственно. В математике принято не различать многие объекты, изучаемые свойства которых совпадают. Например, для того, чтобы складывать и умножать, вовсе не обязательно учить отдельно таблицы сложения и умножения для яблок, и отдельно — для стульев. Достаточно уметь складывать числа. Число в данной ситуации можно представлять как количество единиц некоторого обобщенного продукта, неважно какого. В теории полей два поля F и G считаются «одинаковыми» или изоморфными, если можно построить такое взаимно-однозначное отображение s:FG, чтобы для любых x>1,x>2F выполнялись условия s(x>1+x>2)=s(x>1)+s(x>2), s(x>1x>2)=s(x>1)s(x>2). Фактически это означает, что можно взаимно-однозначно сопоставить всем элементам одного поля элементы другого так, что таблицы умножения и сложения в этих полях будут «одинаковыми». Легко, например, доказать, что при изоморфизме нуль переходит в нуль, единица — в единицу.

Яркий пример использования полей в криптографии вы найдете в этюде 3.5, описывающем криптосистему RSA. Для ее полного понимания рекомендуем решить (или прочитать в любой книге по теории чисел, например, в книге И.М. Виноградова «Основы теории чисел» или в книге О. Оре «Приглашение в теорию чисел») приведенные ниже задачи.

Подумайте сами:

1. Функцией Эйлера (обозначение φ(n)) называется количество неотрицательных целых чисел, меньших n и взаимно простых с n. Пусть n = p>1>1∙...∙p>k>k, где p>1, ..., p>k — различные простые числа, а α>1, ..., α>k — натуральные. Доказать, что

2. (Малая теорема Ферма). Пусть p — простое число, a — число взаимно простое с p. Докажите, что тогда

3. (Теорема Эйлера). Пусть a и n — взаимно простые числа. Докажите, что тогда

3.4. Проблемы факторизации чисел и дискретного логарифмирования

Еще в младших классах школы все решают задачи по разложению чисел на простые множители. Делается это просто делением данного числа на последовательные простые числа. Если число большое, то этот алгоритм будет работать долго (даже на компьютере). Если же число очень большое (скажем, состоит из 200 знаков), самому современному компьютеру могут понадобиться годы работы. И, как это ни странно, до сих пор математики не придумали никакого другого алгоритма, работающего существенно быстрее. Проблема построения такого алгоритма называется проблемой факторизации чисел. С другой стороны, существуют быстрые алгоритмы, позволяющие с большой вероятностью определять, является ли данное число простым или нет (но никакого разложения числа на простые множители эти алгоритмы не находят).

Криптографические приложения проблемы факторизации чисел и, особенно, заинтересованность пользователей банковских систем цифровой подписи привели к резкому увеличению исследований, связанных с разложением чисел на множители. В последние годы благодаря применению тонких методов теории чисел и алгебраической геометрии было разработано несколько эффективных алгоритмов факторизации. Наилучший из таких алгоритмов еще не является полиномиальным, но уже и не экспоненциальный, он относится к классу так называемых


Рекомендуем почитать
Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.