200 знаменитых головоломок мира - [75]

Шрифт
Интервал

способами так, чтобы они не атаковали друг друга. На обычной шахматной доске n = 8, следовательно, на ней 14 слонов можно расположить 256 различными способами. Довольно удивительно, что в общем случае получается такой простой ответ.

127. Решение этой головоломки показано на рисунке. Можно заметить, что ни один ферзь не атакует друтого и что никакие три ферзя не располагаются на одной наклонной прямой. Это единственное расположение из 12 фундаментальных решений, удовлетворяющее последнему условию.

128. Решение этой головоломки приведено на рисунке слева. Это единственное решение, удовлетворяющее заданным условиям. Однако если бы одна из 8 звезд не была уже предварительно помещена на рисунке, то существовало бы 8 способов расположения, получающихся из данного с помощью поворотов и отражений. Так, если вы будете поворачивать рисунок, чтобы при этом каждая из сторон квадрата оказалась по очереди внизу, то получите 4 решения, а если для каждого из них вы построите зеркально-симметричное решение, то добавится еще 4 решения. Следовательно, эти 8 решений представляют собой лишь вариации одного «фундаментального» решения. Но в случае, когда место одной из звезд предварительно не фиксируется, существует и другое фундаментальное решение, показанное на рисунке справа. Однако это расположение обладает определенной симметрией и потому порождает только 4 решения.

129. На рисунке показано, как следует переложить плитки. Как и прежде, не хватает одной желтой и одной розовой плиток. Я хотел бы подчеркнуть, что в предыдущем расположении желтую и розовую плитки в седьмой горизонтали можно поменять местами, но никакое иное расположение невозможно.

130. При некоторых расположениях получается больше диагональных слов из четырех букв, чем при других, и мы сначала поддаемся искушению отдать им предпочтение; но это ложный след, поскольку все, что мы выигрываем в диагональных направлениях, мы проигрываем вдоль вертикалей и горизонталей. Конечно, тому, кто решает эту задачу, сразу приходит в голову, что слова LIVE и EVIL стоят вдвое больше других слов, ибо их мы всегда считаем дважды. Это важное наблюдение, хотя порой те расположения, которые содержат больше всего таких слов, оказываются бесплодными в отношении других, и мы в целом остаемся в проигрыше.

Приведенное на рисунке расположение удовлетворяет условию, согласно которому никакие две одинаковые буквы не должны находиться на одной вертикали, горизонтали или диагонали; и оно приводит к тому, что данные 5 слов удается прочитать 20 раз — 6 по горизонтали, 6 по вертикали, 4 вдоль диагоналей, отмеченных стрелками слева, и 4 вдоль диагоналей, отмеченных стрелками справа. Это максимум.

Четыре множества из восьми букв можно расположить на доске с 64 клетками 604 различными способами, при которых никакие две одинаковые буквы не находятся на одной прямой. При этом расположения, получающиеся друг из друга с помощью поворотов и отражений, не считаются различными и, кроме того, не учитываются перестановки внутри самих букв, то есть, например, перемена местами букв L и Е.

Далее: странно не только то, что приведенное расположение с 20 словами оказывается максимальным, но также и то, что максимум можно получить лишь из этого расположения. Однако если вы поменяете местами в данном решении буквы V с буквами I, a L — с Е, то получите по-прежнему 20 слов. Следовательно, существуют 2 способа достичь максимума из одного и того же расположения. Минимальное число слов равно нулю, то есть буквы можно расположить таким образом, чтобы ни по какому направлению не удавалось прочесть ни одного слова.

131. Обозначим буквами А, К, Q, J соответственно туза, короля, даму и валета, а буквами D, S, Н, С — бубны, пики, червы и трефы. На рисунке приведены два способа, 1 и 2, расположения букв каждой группы, при которых никакие две одинаковые буквы не располагаются на одной прямой, хотя поворот на четверть оборота расположения 1 приведет к расположению 2. Если мы наложим друг на друга эти два квадрата, то получим расположение 3, дающее одно решение. Но в каждом квадрате мы можем переставить буквы на верхней горизонтали 24 способами, не меняя схемы расположения. Так, на рисунке 4 буквы S помещены на место букв D из расположения 2, буквы Н — на место S, С — на место Н и D — на место С. Отсюда, очевидно, следует, что два исходных расположения можно скомбинировать 24 х 24 = 576 способами. Однако ошибка, которую сделал Ля-босн, состояла в том, что А, К, Q, J он располагал способом 1, a D, S, Н, С — способом 2. Таким образом, он учел отражения и повороты на пол-оборота, но проглядел повороты на четверть оборота. Очевидно, их можно менять местами. Поэтому, если отражения и повороты считать новыми решениями, правильным ответом будет 2 х 576 = 1152. По-другому можно сказать, что пары на верхней горизонтали можно записать 16 х 9 х 4 х 1 = = 576 различными способами, а учитывая то, что квадрат можно заполнить двумя способами, получаем всего 1152 решения.

132. Как отмечалось, при данных условиях поместить все изображенные на рисунке буквы в ящик невозможно, но головоломка состояла в том, чтобы поместить максимально возможное количество таких букв.


Еще от автора Генри Эрнест Дьюдени
Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Кентерберийские головоломки

Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Том 32. Бабочка и ураган. Теория хаоса и глобальное потепление

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.