200 знаменитых головоломок мира - [72]
107. Когда Монтукла в своем издании книги Озанама «Recreations in Mathematics» заявил, что «существует не более трех равновеликих прямоугольных треугольников с целыми сторонами, но имеется сколько угодно таких прямоугольных треугольников с рациональными сторонами», он, как это ни странно, упустил из виду, что если вы приведете рациональные длины сторон к общему знаменателю и удалите этот знаменатель, то получите значения целых сторон искомых треугольников.
Каждому читателю стоит знать, что если мы возьмем любые два числа m и n, то m>2 + n>2, m>2 — n>2 и 2mn будут тремя сторонами рационального прямоугольного треугольника[37]. Здесь m и n называются производящими числами. Чтобы образовать три таких равновеликих треугольника, мы воспользуемся следующими простыми соотношениями, где m — большее число:
mn + m>2 + n>2 = a,
m>2 – n>2 = b,
2mn – n>2 = c.
Теперь, если мы образуем три треугольника с помощью трех пар порождающих чисел, а и b, а и с, а и b + с, то их площади окажутся равными. Это та самая небольшая задача, о которой Льюис Кэрролл писал в своем дневнике: «Сидел прошлой ночью до 4 часов утра над соблазнительной задачей, которую мне прислали из Нью-Йорка, «найти три равновеликих прямоугольных треугольника с рациональными сторонами». Я нашел два... но не смог найти трех!»
Сейчас я приведу формулу, с помощью которой мы всегда по заданному рациональному прямоугольному треугольнику можем найти рациональный прямоугольный треугольник равной площади. Пусть z — гипотенуза, b — основание, h — высота, а — площадь данного треугольника; тогда все, что мы должны сделать, — это образовать рациональный прямоугольный треугольник с помощью производящих чисел z>2 и 4а и привести каждую сторону к знаменателю 2z(b>2 — h>2), и мы получим требуемый ответ в целых числах.
Ответ в наименьших целых числах на нашу головоломку такой:
Площадь в каждом случае равна 341 880 квадратным единицам. Я не стану здесь подробно показывать, как именно я получил эти числа. Однако я скажу, что первые три треугольника принцы получили описанным выше способом, отправляясь от чисел 3 и 4, которые приводят к порождающим парам 37, 7; 37, 33; 37, 40. Эти три пары чисел дают решение неопределенного уравнения a>3b - b>3a = 341 880.
Если мы сможем найти другую пару чисел, то дело будет сделано. Этими производящими числами будут 56, 55, которые и приводят к последнему треугольнику. Следующий ответ, наилучший после данного, который мне удалось найти, получается из 5 и 6, порождающих производящие пары 91, 11; 91, 85; 91, 96. Четвертой порождающей парой будет 63, 42.
Читатель поймет из того, что я сказал выше, что существует сколь угодно много равновеликих рациональных прямоугольных треугольников, стороны которых выражаются целыми числами.
108. Вот простое решение головоломки о трех девятках:
Чтобы разделить 18 на •9[38] (или
109. Решение состоит в следующем. Партия двух игроков, в совершенстве владеющих данной игрой, всегда должна заканчиваться вничью. Ни один из таких игроков не может выиграть у другого иначе, как по недосмотру противника. Если Нолик (первый игрок) занимает центр, Крестик должен занять угол на своем первом ходу, в противном случае Нолик, несомненно, выиграет. Если Нолик на первом ходу занимает угол, то Крестик сразу же должен занять центр, иначе он проиграет. Если Нолик начинает с боковой клетки, то обоим игрокам следует быть очень внимательными, ибо имеется много подводных камней. Однако Нолик может безопасно для себя свести дело к ничьей, а выиграть он может лишь по недосмотру Крестика.
110. Решение таково. Первый игрок может всегда выиграть при условии, что первый ход он сделает в центр. Хорошей вариацией данной игры будет условие, что первый игрок на первом ходу не имеет права ходить в центр. В этом случае второй игрок сразу же должен пойти в центр. Такая ситуация должна кончиться ничьей, но чтобы свести игру к ней уверенно, первый игрок обязан пойти на своем первом и втором ходах в два смежных угла (например, в 1 и 3). Тогда игра потребует огромного внимания с обеих сторон.
111. Сэр Исаак Ньютон в своей «Универсальной арифметике» показал нам, что мы можем разделить волов в каждом случае на две части — одна часть съедает прирост травы, а другая — накопленную траву. Первая часть меняется прямо пропорционально размеру поля и не зависит от времени; вторая тоже меняется прямо пропорционально размеру поля и, кроме того, обратно пропорционально времени. Со слов фермера мы определяем, что 6 волов съедают прирост травы на 10-акровом поле, а 6 волов съедают траву на 10 акрах за 16 недель. Следовательно, если 6 волов съедают прирост травы на 10 акрах, то 24 вола будут его съедать на 40 акрах.
Далее мы находим, что если 6 волов съедают накопленную траву на 10 акрах за 16 недель, то
12 съедают траву на 10 акрах за 8 недель,
48 съедают траву на 40 акрах за 8 недель,
192 съедают траву на 40 акрах за 2 недели,
64 съедают траву на 40 акрах за 6 недель.
Складывая полученные два результата (24 + 64), мы находим, что 88 волов могут прокормиться на 40-акровом лугу в течение 6 недель при условии равномерного роста травы в течение всего времени.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.